

Electrical Circuit-II 4th Lecture (Part 1) The Basic Elements and Phasors By: Dr. Ali Albu-Rghaif

Ref: Robert L. Boylestad, *INTRODUCTORY CIRCUIT ANALYSIS*, Pearson Prentice Hall, Eleventh Edition, 2007

AC Through Pure Resistor

The Basic Elements and Phasors

Resistance is, for all practical purposes, unaffected by the frequency of the applied sinusoidal voltage or current.

Ohm's law can be applied as follows: $v = V_m \sin \omega t$,

$$i = \frac{v}{R} = \frac{V_m \sin \omega t}{R}$$
$$= \frac{V_m}{R} \sin \omega t = I_m \sin \omega t$$
$$I_m = \frac{V_m}{R}$$

In addition, for a given i,

 $v = iR = (I_m \sin \omega t)R$ = $I_m R \sin \omega t = V_m \sin \omega t$

 $V_m = I_m R$

Frequency Response of the Resistor

Resistor R For an ideal resistor, you can assume that frequency will have absolutely no effect on the impedance level

Note that at 5 kHz or 20 kHz, the resistor remains at 22 Ω 0 5 10 15 20 f(kHz)

Average Power & Power Factor

A common question is, How can a sinusoidal voltage or current deliver power to a load if it seems to be delivering power during one part of its cycle and taking it back during the negative part of the sinusoidal cycle?

Average Power & Power Factor

The Power Factor is defined as the cosine of the phase angle between the voltage and current: Power Factor = $P.F = \cos \Phi$

Where \emptyset is the phase difference angle between (v & i). Since v & i are in-phase, then $\emptyset=0$

Power Factor = 1

AC Through Pure Inductance

 $v_L = L \frac{di_L}{dt}$

and, applying differentiation,

$$\frac{di_L}{dt} = \frac{d}{dt}(I_m \sin \omega t) = \omega I_m \cos \omega t$$

Therefore,
$$v_L = L \frac{di_L}{dt} = L(\omega I_m \cos \omega t) = \omega L I_m \cos \omega t$$

or
$$v_L = V_m \sin(\omega t + 90^\circ)$$

where $V_m = \omega L I_m$

for an inductor, v_L leads i_L by 90°, or i_L lags v_L by 90°.

The Basic Elements and Phasors

Frequency Response of the Inductance

The Basic Elements and Phasors

Average Power

In a purely inductive circuit, since v leads i by 90°, $|\theta_v - \theta_i| = \theta = |-90^\circ| = 90^\circ$. Therefore,

$$P = \frac{V_m I_m}{2} \cos 90^\circ = \frac{V_m I_m}{2} (0) = 0 \text{ W}$$

The average power or power dissipated by the ideal inductor (no associated resistance) is zero watts.

AC Through Pure Capacitor

The Basic Elements and Phasors

$$i_C = C \frac{dv_C}{dt}$$

and, applying differentiation,

$$\frac{dv_C}{dt} = \frac{d}{dt}(V_m \sin \omega t) = \omega V_m \cos \omega t$$

Therefore,

$$i_C = C \frac{dv_C}{dt} = C(\omega V_m \cos \omega t) = \omega C V_m \cos \omega t$$

or

$$i_C = I_m \sin(\omega t + 90^\circ)$$
$$I_m = \omega C V$$

where

 $I_m = \omega C V_m$

for a capacitor, i_c leads v_c by 90°, or v_c lags i_c by 90°.

Frequency Response of the Capacitor

Average Power

In a purely capacitive circuit, since *i* leads *v* by 90°, $|\theta_v - \theta_i| = \theta = |-90^\circ| = 90^\circ$. Therefore,

$$P = \frac{V_m I_m}{2} \cos(90^\circ) = \frac{V_m I_m}{2} (0) = 0 \text{ W}$$

The average power or power dissipated by the ideal capacitor (no associated resistance) is zero watts.

Frequency Response Summary

	R	L	С
Power Factor cosΦ	1	0	0
Average Power $P_{av} = P$	$\frac{V_m I_m}{2} = V_{rms} I_{rms}$	0	0
Impedance Z	R	$X_L = wL$	$X_C = \frac{1}{wc}$
Phase Difference between V & I Φ	0	v _L Leads i _L Or i _L Lags v _L 90°	v _c Lags i _c Or i _c Leads v _c 90°
Frequency Response	Constant	Linear	Non-Linear

Example

For the following pairs of voltages and currents, determine whether the element involved is a capacitor, an inductor, or a resistor. Determine the value of C, L, or R if sufficient data are provided

a.
$$v = 100 \sin(\omega t + 40^{\circ})$$

 $i = 20 \sin(\omega t + 40^{\circ})$
b. $v = 1000 \sin(377t + 10^{\circ})$
 $i = 5 \sin(377t - 80^{\circ})$

Solutions:

a. Since v and i are in phase, the element is a resistor, and

$$R = \frac{V_m}{I_m} = \frac{100 \text{ V}}{20 \text{ A}} = 5 \Omega$$

b. Since v leads i by 90°, the element is an inductor, and

$$X_L = \frac{V_m}{I_m} = \frac{1000 \text{ V}}{5 \text{ A}} = 200 \Omega$$

so that $X_L = \omega L = 200 \Omega$ or

$$L = \frac{200 \ \Omega}{\omega} = \frac{200 \ \Omega}{377 \ \text{rad/s}} = 0.53 \ \text{H}$$

Example

c.
$$v = 500 \sin(157t + 30^\circ)$$

 $i = 1 \sin(157t + 120^\circ)$
d. $v = 50 \cos(\omega t + 20^\circ)$
 $i = 5 \sin(\omega t + 110^\circ)$

Solutions:

c. Since *i leads* v by 90°, the element is a *capacitor*, and

$$X_C = \frac{V_m}{I_m} = \frac{500 \text{ V}}{1 \text{ A}} = 500 \Omega$$

so that
$$X_C = \frac{1}{\omega C} = 500 \ \Omega$$
 or
 $C = \frac{1}{\omega 500 \ \Omega} = \frac{1}{(157 \text{ rad/s})(500 \ \Omega)} = 12.74 \ \mu\text{F}$
d. $v = 50 \cos(\omega t + 20^\circ) = 50 \sin(\omega t + 20^\circ + 90^\circ)$
 $= 50 \sin(\omega t + 110^\circ)$

Since v and i are *in phase*, the element is a *resistor*, and

$$R = \frac{V_m}{I_m} = \frac{50 \text{ V}}{5 \text{ A}} = 10 \Omega$$

Example

Determine the average power delivered to networks having the following input voltage and current:

a. $v = 100 \sin(\omega t + 40^{\circ})$ b. $v = 150 \sin(\omega t - 70^{\circ})$ $i = 3 \sin(\omega t - 50^\circ)$ $i = 20 \sin(\omega t + 70^\circ)$ a. $V_m = 100, \quad \theta_v = 40^\circ$ $I_m = 20 \text{ A}, \ \theta_i = 70^{\circ}$ $\begin{bmatrix} m \\ \theta \end{bmatrix} = \begin{bmatrix} \theta_{m} - \theta_{i} \end{bmatrix} = \begin{bmatrix} 40^{\circ} - 70^{\circ} \end{bmatrix} = \begin{bmatrix} -30^{\circ} \end{bmatrix} = 30^{\circ}$ and

Solutions:

$$P = \frac{V_m I_m}{2} \cos \theta = \frac{(100 \text{ V})(20 \text{ A})}{2} \cos(30^\circ) = (1000 \text{ W})(0.866)$$

= 866 W

b.
$$V_m = 150 \text{ V}, \quad \theta_v = -70^\circ$$

 $I_m = 3 \text{ A}, \quad \theta_i = -50^\circ$
 $\theta = |\theta_v - \theta_i| = |-70^\circ - (-50^\circ)|$
 $= |-70^\circ + 50^\circ| = |-20^\circ| = 20^\circ$

and

$$P = \frac{V_m I_m}{2} \cos \theta = \frac{(150 \text{ V})(3 \text{ A})}{2} \cos(20^\circ) = (225 \text{ W})(0.9397)$$
$$= 211.43 \text{ W}$$