

Electrical Circuit-l 10th Lecture-Tutorial MESH ANALYSIS

By: Dr. Ali Albu-Rghaif

Ref: Robert L. Boylestad, *INTRODUCTORY CIRCUIT ANALYSIS*, Pearson Prentice Hall, Eleventh Edition, 2007

Write the mesh equations for the network in Fig. 6, and find the current I2 through the 7Ω resistor

Solution:

Step 1:

Step 1: As indicated in Fig. 6, each assigned loop current has a clockwise direction.

Steps 2 to 4:

$$I_1$$
: $(8 \Omega + 6 \Omega + 2 \Omega)I_1 - (2 \Omega)I_2 = 4 V$
 I_2 : $(7 \Omega + 2 \Omega)I_2 - (2 \Omega)I_1 = -9 V$

and

$$16I_1 - 2I_2 = 4$$

$$-2I_1 + 9I_2 = -9$$

which, for determinants, are

and
$$I_2 = I_{7\Omega} = \frac{\begin{vmatrix} 16 & 4 \\ -2 & -9 \end{vmatrix}}{\begin{vmatrix} 16 & -2 \\ -2 & 9 \end{vmatrix}} = \frac{-144 + 8}{144 - 4} = \frac{-136}{140}$$
$$= -0.97 \text{ A}$$

FIG. 7

Write the mesh equations for the network in Fig. 7

Solution:

Each window is assigned a loop current in the clockwise direction:

 $I_{1} \text{ does not pass through an element}$ $\text{mutual with } I_{3}.$ $I_{1}: \qquad (1\ \Omega + 1\ \Omega)I_{1} - (1\ \Omega)I_{2} + 0 = 2\ \text{V} - 4\ \text{V}$ $I_{2}: \qquad (1\ \Omega + 2\ \Omega + 3\ \Omega)I_{2} - (1\ \Omega)I_{1} - (3\ \Omega)I_{3} = 4\ \text{V}$ $I_{3}: \qquad (3\ \Omega + 4\ \Omega)I_{3} - (3\ \Omega)I_{2} + 0 = 2\ \text{V}$

 I_3 does not pass through an element mutual with I_1 .

Summing terms yields:
$$2I_1 - I_2 + 0 = -2$$

 $6I_2 - I_1 - 3I_3 = 4$
 $7I_3 - 3I_2 + 0 = 2$

Write the mesh equations for the network in Fig. 8 and find the current I3 through the 10Ω resistor

Solution:

$$I_1$$
: $(8 \Omega + 3 \Omega)I_1 - (8 \Omega)I_3 - (3 \Omega)I_2 = 15 \text{ V}$
 I_2 : $(3 \Omega + 5 \Omega + 2 \Omega)I_2 - (3 \Omega)I_1 - (5 \Omega)I_3 = 0$
 I_3 : $(8 \Omega + 10 \Omega + 5 \Omega)I_3 - (8 \Omega)I_1 - (5 \Omega)I_2 = 0$

or
$$11I_1 - 8I_3 - 3I_2 = 15 \text{ V}$$

$$10I_2 - 3I_1 - 5I_3 = 0$$

$$23I_3 - 8I_1 - 5I_2 = 0$$

$$11I_1 - 3I_2 - 8I_3 = 15 \text{ V}$$

$$-3I_1 + 10I_2 - 5I_3 = 0$$

$$-8I_1 - 5I_2 + 23I_3 = 0$$

and
$$I_3 = I_{10\Omega} = \frac{\begin{vmatrix} 11 & -3 & 15 \\ -3 & 10 & 0 \\ -8 & -5 & 0 \end{vmatrix}}{\begin{vmatrix} 11 & -3 & -8 \end{vmatrix}}$$

MESH ANALYSIS

FIG. 8

= 1.22 A