MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدر اسبة **Electrical Engineering Module Title Module Delivery Fundamentals II Module Type** Core **☒** Theory **EPE 104 Module Code ⊠** Lecture 7 **ECTS Credits ⊠** Lab **☑** Tutorial SWL (hr/sem) 175 **☒** Practical □ Seminar **Module Level Semester of Delivery** 1 1 **Administering Department** Type Dept. Code Type College Code College **Module Leader** Name: Yasir Ghazi Rashid e-mail E-mail: yasserghazee_enge@uodiyala.edu.iq Asst. Lect. Module Leader's Acad. Title **Module Leader's Qualification** M.Sc. **Module Tutor** Name (if available) E-mail e-mail **Peer Reviewer Name** Name E-mail e-mail **Scientific Committee Approval Version Number** 01/06/2023 1.0 **Date**

Relation with other Modules العلاقة مع المواد الدراسية الأخرى Prerequisite module Electrical Engineering Fundamentals I Semester 1 Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Objectives أهداف المادة الدراسية	 This course deals with the basic concept of AC electrical circuits. To understand ac voltage and current from a given circuit. To understand Root Mean-Square (R.M.S.) & Average Value To understand ac power Average power, Reactive power, Complex power. To analysis the RL, RC, RLC circuit analysis To perform mesh and Nodal analysis in AC circuit. To develop problem solving skills and understanding of circuit theory through the application of techniques. 			
Module Learning Outcomes	1. Recognize advantages of use alternating current. 2. Recognize why using Sine Waveform 3. Define inductors and capacitors. 4. How generation of alternating voltages and currents. 5. Recognize Phasor representation of AC quantities. 6. Define Ohm's Law in AC. Circuits.			
	7. Identify the basic circuit elements and their applications.			

	8. Explain the two Kirchoff's laws used in circuit analysis.
	9. Discuss the Sinusoidal Steady-State Analysis.
	Indicative content includes the following.
	Part A - A.C. Fundamentals
	Introduction, Sinusoids, Phasors, Phasor Relationships for Circuit Elements, Root Mean-Square (R.M.S.) & Average Values, Impedance and Admittance, [18 hrs]
	Part B - A.C Circuit
Indicative Contents	Introduction, Capacitors, Series and Parallel Capacitors, Inductors, Series and Parallel Inductors, Series A.C. circuits, Parallel A.C. Circuits, Kirchhoff's Laws in the Frequency Domain, Impedance Combinations. [15 hrs]
المحتويات الإر شادية	Part C - Sinusoidal Steady-State Analysis
,	Nodal Analysis, Nodal Analysis with Voltage Sources, Mesh Analysis, Mesh Analysis with Current Sources, Superposition Theorem, Thevenin and Norton Equivalent Circuits [24 hrs]
	Part D - Frequency Response
	Series Resonance, Parallel Resonance, [6 hrs]
	Revision problem classes [6 hrs]

Learning and Teaching Strategies			
استراتيجيات التعلم والتعليم			
Strategies	1. Behavior management		

Behavior management strategies foster an atmosphere of mutual respect, reduce disruptive behavior and ensure students have an equal opportunity to fulfill their potential in the classroom. It's crucial to provide them with both a positive and productive learning environment. Examples include establishing a reward system with an interactive chart where students move up or down depending on their performance and behavior in class.

2. Blended learning

With a blended learning teaching strategy, technology is incorporated with traditional learning. This allows students to work at their own pace, research their ideas and become more physically engaged during lessons. Examples include providing interactive tablets or whiteboards with engaging activities and posting classwork online for easier access.

3. Cooperative learning

Group work is a cooperative learning strategy that allows students with various learning levels to work together. By encouraging them to express their own ideas and listen to others' ideas as a group, you help students develop communication and critical thinking skills. Examples include solving math puzzles together, performing skits as a team or working on group presentations.

4. Formative assessment

A formative assessment is used periodically to monitor student learning incrementally. This can more effectively measure the process of learning as opposed to end-of-unit tests and can help you to improve your teaching methods throughout the year. Examples of this teaching strategy include self-evaluation exercises and summarizing a topic in multiple ways.

5. Student-led teaching

The student-led teaching strategy lets students become the teacher. In a classroom with learners at different levels, you can better engage those learning faster by showing them how to teach and give feedback to their peers. They may team-teach or work in groups to teach a new topic. Examples include letting a student teach an entire lesson or having advanced writers lead a peer-editing session as well as provide constructive criticism.

Student Workload (SWL)				
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	100	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	7	

Unstructured SWL (h/sem)		Unstructured SWL (h/w)	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	75	الحمل الدراسي غير المنتظم للطالب أسبوعيا	6
Total SWL (h/sem)			
الحمل الدراسي الكلي للطالب خلال الفصل	175		

Module Evaluation

تقييم المادة الدراسية

		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 12	LO #1, #4 and #8, #11
Formative	Assignments	2	10% (10)	3 and 13	LO #3, #4 and #10, #14
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO #5, #8 and #10
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)			
المنهاج الاسبوعي النظري			
Material Covered			
Week 1	Introduction: AC Circuits, A.C. Fundamentals, Types of waveforms		

Week 2	Definition of: Waveform, Instantaneous value, Cycle, Time period, Frequency, Amplitude,
	Peak-to-peak value, Phase, Phase angle, Phase difference, Angular Frequency
Week 3	Root-Mean-Square (R.M.S.) & Average Values
Week 4	Capacitors, Series and Parallel Capacitors
	Inductors, Series and Parallel Inductors
Week 5	A.C. Through Resistance, Inductance and Capacitances
Week 6	Series A.C. circuits
Week 7	Parallel A.C. circuits: Vector or Phasor Method, Admittance Method (Y), Complex or Phasor Algebra
Week 8	Mid-term Exam
	Kirchhoff's Laws in the Frequency Domain
Week 9 • Impedance Combinations	
	Wye-to-Delta transformations
Week 10	Sinusoidal Steady-State Analysis: Nodal Analysis, Mesh Analysis
Week 11	Sinusoidal Steady-State Analysis: Mesh Analysis
Week 12	Circuit Theorems: Superposition, Source Transformation
Week 13	Circuit Theorems: Thevenin and Norton Equivalent Circuits
Week 14	AC Power Analysis: Power Triangle, Power Factor, Complex Power
Week 15	Frequency Response: Series Resonance, Parallel Resonance
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Lab 1: A.C. Measurement Instruments		

Week 2	Lab 2: Introduction to Oscilloscope
Week 3	Lab 3: Inductors
Week 4	Lab 4: Capacitors
Week 5	Lab 5: Ohm's Law in A.C. Circuits
Week 6	Lab 6: Series and Parallel Combinations
Week 7	Lab 7: Wye-Delta Transformations
Week 8	Lab 8: Kirchhoff's Laws in the Frequency Domain
Week 9	Lab 9: Superposition theorems
Week 10	Lab 10: Thevenin's theorems
Week 11	Lab 11: Norton's theorems
Week 12	Lab 12: Power in AC circuit
Week 13	Lab 13: Series Resonance
Week 14	Lab 14: Parallel Resonance
Week 15	Final Exam

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text Available in the Library				
Required Texts	 Theraja, B. L. A Textbook of Electrical Technology-Volume I (Basic Electrical Engineering). Vol. 1. S. Chand Publishing, 2005. C.K. Alexander and M.N.O Sadiku, Fundamentals of Electric Circuits, McGraw-Hill Education, Fifth Edition, 2013 	Yes			
Recommended Texts	 Allan H. Robbins and Wilhelm C. Miller, Circuit analysis: Theory and practice, Cengage Learning, Fifth Edition, 2013. Nilsson, James William, Electric circuits, Pearson Education India, 2008. 	No			

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks %	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	नॅन्ट	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.