MODULE DESCRIPTION FORM

نموذج وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية						
Module Title	Electromagnetics				Module Delivery	
Module Type		Core			I Theory	
Module Code		EPE208			🛛 Lecture	
ECTS Credits		7			🗆 Lab	
					🛛 Tutorial	
SWL (hr/sem)		175			⊠ Practical	
					Seminar	
Module Level		1	Semester of Delivery		1	
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Name: Yasir G	hazi Rashid	e-mail	E-mail:	yasserghazee_eng	e@uodiyala.edu.iq
Module Leader's Acad. Title Asst. Lect.		Asst. Lect.	Module Lea	ader's Qualification M.Sc.		M.Sc.
Module Tutor	Name (if availa	ailable) e-mail		E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/01/2024	Version Nu	mber	1.0	

	Relation with other Modules			
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives أهداف المادة الدر اسية	 The main goal of studying the electromagnetic theory course is to identify the basic principles of this theory, as follows Study vectors in general in systems of perpendicular, cylindrical and spherical axes. And also, a study of field dispersion, Chaos's theorem, field rotation, Stock's theorem, and finally Crane's theorem. Studying the stable electric field in vacuum and treating the Laplace and Poisin equations and their solutions in Cartesian, cylindrical and spherical coordinate systems. Also, a study of the electric dipole and electric quadrupole, the single solution theorem, and the method of electrical images. Study the stable electric field in insulating materials and understand the phenomenon of polarization in these materials. In addition to calculating electrical displacement, electrical influence, and dielectric constant, as well as studying the Laplace and Poise equations in insulating materials. The objective of the subject of electromagnetic theory in the second course is to introduce the student to the concept of voltage and the potential difference on a charge or system of charges and the potential field, as well as the relationship between voltage and the electric field and ways to extract them mathematically, in addition to getting to know the concepts of the electric duo and electric flux and knowing their laws and ways to extract them. In this course, the student also learns about the types of materials. The student also learns about the concept of electrical polarization. The student also learns about the concept of electrical polarizations and their direct relationship to the electric al capacity and energy stored in them, the operation of capacitors and methods of connecting them. Finally, the concept of magnetic flux and how it arises is learned, and the laws of Biot-Svart & amp; We then discuss the magnetic field, how to measure it on a strip of electric current, and magnetic flux density and its relationship to the magnetic field. The stud				

Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 On completion of the course the students should be able: To have detailed knowledge of the physical background and terminology of the electromagnetic field theory for electrical engineering problems To understand the electromagnetic field behaviour. To select and use appropriate theoretical models for analysis, problem solving and finding solutions related to the electrostatic, electrodynamics and electromagnetic fields.
Indicative Contents المحتويات الإر شادية	Indicative content includes the following. Part A - Basic Concepts Introduction, Systems of Units, Charge and Current, Voltage, Power and Energy, Circuit Elements [18 hrs] Part B - Basic Laws Ohm's Law, Nodes, Branches, and Loops, Kirchhoff's Laws, Series Resistors and Voltage Division, Parallel Resistors and Current Division, Wye-Delta Transformations. [15 hrs] Part C - Methods of Analysis Nodal Analysis, Nodal Analysis with Voltage Sources, Mesh Analysis, Mesh Analysis with Current Sources [12 hrs] Part D - Circuit Theorems Superposition, Source Transformation, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer [24 hrs] Revision problem classes [6 hrs]

Learning and Teaching Strategies

	استراتيجيات التعلم والتعليم
	1. Behavior management
	Behavior management strategies foster an atmosphere of mutual respect, reduce disruptive behavior and ensure students have an equal opportunity to fulfill their potential in the classroom. It's crucial to provide them with both a positive and productive learning environment. Examples include establishing a reward system with an interactive chart where students move up or down depending on their performance and behavior in class.
	2. Blended learning
	With a blended learning teaching strategy, technology is incorporated with traditional learning. This allows students to work at their own pace, research their ideas and become more physically engaged during lessons. Examples include providing interactive tablets or whiteboards with engaging activities and posting classwork online for easier access.
	3. Cooperative learning
Strategies	Group work is a cooperative learning strategy that allows students with various learning levels to work together. By encouraging them to express their own ideas and listen to others' ideas as a group, you help students develop communication and critical thinking skills. Examples include solving math puzzles together, performing skits as a team or working on group presentations.
	4. Formative assessment
	A formative assessment is used periodically to monitor student learning incrementally. This can more effectively measure the process of learning as opposed to end-of-unit tests and can help you to improve your teaching methods throughout the year. Examples of this teaching strategy include self-evaluation exercises and summarizing a topic in multiple ways.
	5. Student-led teaching
	The student-led teaching strategy lets students become the teacher. In a classroom with learners at different levels, you can better engage those learning faster by showing them how to teach and give feedback to their peers. They may team-teach or work in groups to teach a new topic. Examples include letting a student teach an entire lesson or having advanced writers lead a peer-editing session as well as provide constructive criticism.

Student Workload (SWL)

الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبو عيا	7	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	82	Unstructured SWL (h/w) 82 الحمل الدراسي غير المنتظم للطالب أسبو عيا		
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل		175		

Module Evaluation تقييم المادة الدر اسية						
	Time/NumberWeight (Marks)Week DueRelevant Learning Outcome					
	Quizzes	2	10% (10)	5 and 12	LO #1, #4 and #8, #11	
Formative	Assignments	2	10% (10)	3 and 13	LO #3, #4 and #10, #14	
assessment	Projects	1	10% (10)	Continuous	All	
	Report	1	10% (10)	14	LO #5, #8 and #10	
Summative	Midterm Exam	2hr	10% (10)	8	LO #1 - #7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment		·	100% (100 Marks)			

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري

	Material Covered
Week 1	Electromagnetics Overview What is electromagnetics?; Why study electromagnetics?; Course topics
Week 2	Vector Algebra: Scalars and Vectors; Unit Vector; Vector Addition and Subtraction; Position and Distance Vectors; Vector Multiplication; Components of a Vector
Week 3	Coordinate Systems and Transformation: Cartesian Coordinates (x , y , z); Circular Cylindrical Coordinates (ρ , φ , z); Spherical Coordinates (r , \emptyset , φ); Constant-Coordinate Surfaces, the transformation between coordinate system. Vector Calculus: Differential Length, Area, and Volume; Line, Surface, and Volume Integrals Del Operator; Gradient of a Scalar; Divergence of a Vector and Divergence Theorem.
Week 4	Coulomb's Law and Electric Field Intensity: The experimental law of Coulomb, Electric field intensity; Field of n point charges; Electric fields due to continuous charge distributions (line charge, surface charge and volume charge distributions), Steam line and sketches of fields; Electric flux density.
Week 5	Gauss's Law-Electric Flux Density: Gauss's law; Some symmetrical charge distribution, Application of gauss's law; Maxwell's first equation (for electrostatics); The vector operator and the divergence theorem.
Week 6	Electrostatic Fields Coulomb's Law and Field Intensity; Electric Flux Density, and Gauss's Law; Applications of Gauss's Law; Energy and Potential.
Week 7	Energy and Potential:

	Energy and potential-energy expended in moving a point charge in an electric field; The line
	integrals; Potential difference and potential, The potential field of a point charge; The
	potential field of a system of charges; Conservative property; Potential gradient; The dipole
	energy density in the electrostatic field.
Week 8	Mid-term Exam
	Electric Fields in Material Space:
Week 9	Properties of Materials; Convection and Conduction Currents; Conductor properties and boundary conditions; The method of mages; Semiconductors; The nature of dielectric materials; Boundary conditions for perfect dielectric materials.
	Capacitance:
Week 10	Capacitance; Capacitance of some useful configuration; Capacitance of a two-wire line; Poisson's and Laplace's equations-Poisson's and Laplace equations; Uniqueness theorem;
	Solution of Laplace's equation in certain situation; Solution of Poisson's equation in certain situation; Product solution of Laplace's equation.
Week 11	Magnetostatic Fields:
vv een 11	The steady of magnetic field; Biot- savart law; the curl; Stocke's theorem
	Magnetostatic Fields:
Week 12	Ampere's circuit law; Application of ampere's law; Magnetic flux and magnetic flux density; The scalar and vector magnetic potential; Derivation of steady magnetic field laws.
	Magnetostatic Fields:
Week 13	Magnetic forces; Materials and inductance-force on a moving charge; Force on a differential current element; Force between differential current elements.
	Magnetostatic Fields:
Week 14	Force and torque on a closed circuit; The nature of magnetic materials; Magnetization and permeability; Magnetic boundary conditions, The magnetic circuit, Potential energy and forces on magnetic materials; Inductance and mutual inductance; Time varying fields.

	Maxwell's Equations:
Week 15	Maxwell's equations-faraday's law; displacement current; Maxwell's equations in point form; Maxwell's equations integral form; the retarded potentials.
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources مصادر التعلم والتدريس			
	Text Available in the Library?			
Required Texts	 Matthew, N. O. "Sadiku Elements of Electromagnetics." (2018) Electromagnetics By Joseph Edminister (Schaum's Outline Series): Joseph Edminister, Vishnu Priye Mc Graw Hill Education 	Yes		
Recommended Texts	• Hayt, William Hart. Engineering Electromagnetics . McGraw- Hill Companies, Sixth Edition, 2001.	No		
Websites	https://www.coursera.org/browse/physical-science-and-enginee	ring/electrical-engineering		

	Grading Scheme				
	مخطط الدرجات				
Group	Grade	التقدير	Marks %	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	

(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required
Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark				

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.