MODULEDESCRIPTION FORM وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية						
Module Title	Powe	Power Plants			Module Delivery	
Module Type	Bas	IC				
Module Code	EPE 2	11			Theory	
ECTS Credits	4	4			Lecture Tutorial	
SWL (hr/sem)	100	100				
Module Level		Semester (s)		r (s) offe) offered 2'nd	
Administering Department		Power & Electrical Machines Eng.	College Engineering			
Module Leader	Ibrahim I. Ibrahim		e-mail	<u>Ibraher</u>	brahem a@uodiyala.edu.iq	
Module Leader's Acad. Title		Assist. Lect.	Module Leader's Qualification			M.Sc. in Electrical & Electronic Eng.
Module Tutor Assist		. Lect. Ibrahim I. Ibrahim	e-mail	e-mail Ibrahem a@uodiyala.edu.iq		ala.edu.iq
Peer Reviewer Name			e-mail			
Review Committee Approval			Version N	Number	1.0	

Relation With Other Modules					
العلاقة مع المواد الدر اسية الأخرى					
Prerequisite module	None	Semester	-		
Co-requisites module	None	Semester	-		

Module Aims, Lea	rning Outcomes, Indicative Contents and Brief Description					
أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية مع وصف مختصر						
	This module aims to provide students with a comprehensive understanding of					
	the principles and applications of thermodynamics in power plant engineering.					
Module Aims	The course is designed to equip students with the knowledge of different types					
أهداف المادة الدر اسية	of power plants, their components, and the thermodynamic cycles they operate					
	on. Students will also learn about the environmental and economic					
	considerations of power generation, as well as recent technological					
	advancements in the field.					
	1. Understand and apply the basic concepts of thermodynamics in the					
	context of power plants.					
	2. Analyze the operation and efficiency of various thermodynamic cycles					
	used in power plants.					
Module Learning	3. Identify and explain the function of major power plant components.					
Outcomes	4 . Evaluate the performance of different types of power plants (steam, gas					
.	turbine, hydro) based on thermodynamic principles.					
مخرجات التعلم للمادة الدراسية	5. Assess the environmental and economic impacts of power plants and					
	evolore sustainable alternatives					
	6 Understand recent advancements in newer plant technologies and their					
	implications for future newer generation					
	The tenior listed under the indicative content below are the underning					
	areas of knowledge and understanding that will be obtained from successful					
	completion of the module. The topics are illustrated in the context of					
	relevant engineering scenarios.					
	1. Introduction to Thermodynamics and Power Plants					
	2. Basic Thermodynamic Principles					
	3. The First Law of Thermodynamics					
	4. The Second Law of Thermodynamics and Entropy					
Indicative Contents	5. Thermodynamic Cycles and Heat Engines					
المحتويات الإرشادية	 Ideal Gases and Real Fluids Introduction to Dower Plant Components 					
	7. Introduction to Power Plant components 8. Steam Power Plants					
	9. Gas Turbine Power Plants					
	10. Hydro Power Plants					
	11. Thermodynamic Analysis of Power Plants					
	12. Environmental and Economic Considerations					
	13. Advances in Power Plant Technology					
	14. Case Studies and Practical Applications					
0 0 0	15. Review and Examination Preparation					
Course Description	The "Power Plants" module is a 15-week course designed to provide students					

	with an in-depth understanding of thermodynamic principles as they apply to power generation. The course covers the fundamentals of thermodynamics, the operation and efficiency of various power plant types, and the environmental and economic impacts of power plants. Through theoretical instruction and practical case studies, students will learn to analyze and evaluate the performance of power plant systems and explore recent technological advancements in the field.			
	Learning and Teaching Strategies			
	استر أنيجيات التعلم والتعليم			
Strategies	 Lectures: To introduce and explain core concepts and theories related to thermodynamics and power plants. Tutorials: For detailed problem-solving sessions and discussions on practical applications of theoretical principles. Case Studies: To analyze real-world examples of power plants and understand the application of theoretical knowledge in practical scenarios. Group Projects: To foster collaborative learning and application of course content to design and evaluate power plant systems. Quizzes and Assignments: To reinforce learning and ensure continuous assessment throughout the course. Examination Preparation: Review sessions and practice problems to prepare students for final assessments. 			

Student Workload (SWL) الحمل الدر اسى للطالب				
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل In class lectures 30 In class tests 10 Tutorial 12	52	Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا	5.6	
Unstructured SWL (h/sem) الحمل الدر اسي غير المنتظم للطالب خلال الفصل Assignment 20 Preparation for tests 20 Homework	48	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	5.1	

8		
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	100	

Module Evaluation تقبيم المادة الدر اسية						
	Time (hr)Weight (Marks)Week DueRelevant Learning Outcome					
Formative assessment	Quizzes	2	10% (10)	3,5, 10, 12, 14	LO #1, 2, 3, 4,5 and 6	
	Assignments	6	20% (20)	4, 8, 12	LO # 1, 2, 3, 4, 5 and 6	
Summative assessment	Midterm Exam	2	20% (20)	7	LO # 1,4	
	Final Exam	3	50% (50)	16	All	
Total assessment		100% (100 Marks)				

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري					
Week	Material Covered				
Week 1	 Introduction to Thermodynamics and Power Plants Definitions and Basic Concepts: Dimensions, Units, Mass, Force, Work, Power, Energy. Overview of Power Plants: Definition, Types, and Energy Sources. 				
Week 2	 Basic Thermodynamic Principles Properties of Substances: State, Path, Process, Cycle. State Functions and Heat Transfer: Conduction, Convection, Radiation. Thermal Equilibrium. 				
Week 3	 The First Law of Thermodynamics Energy Conservation: Internal Energy, Work, and Heat. Steady Flow Energy Equation: Practical Applications (Nozzle, Throttling, etc.). 				
Week 4	 The Second Law of Thermodynamics and Entropy Concepts of Reversibility and Irreversibility. Carnot Cycle and Entropy. Entropy Changes in Various Processes. 				

	Thermodynamic Cycles and Heat Engines
Week 5	Overview of Thermodynamic Cycles: Carnot, Ideal Rankine.
	Heat Engines and Their Efficiency.
	 Practical Applications: Boilers, Compressors, Turbines.
	Ideal Gases and Real Fluids
Week 6	 Ideal Gas Laws: Boyle's Law, Charles's Law, Joule's Law.
WEERO	Real Fluid Flow: Compressibility, Pascal's Law.
	Continuity Equation and Bernoulli's Equation.
	Introduction to Power Plant Components
Week 7	Major Components: Pump, Boiler, Turbine, Condenser.
WCCK /	Basic Operation and Function of Each Component.
	Power Plant Layout and Working Principle.
	Steam Power Plants
Week 8	Detailed Study of the Rankine Cycle.
WEEKO	 Modifications for Efficiency: Superheating, Reheating, Regenerative Heating.
	Mollier Chart and Steam Properties.
	Gas Turbine Power Plants
Wook 9	Working Principle and Basic Components.
Week y	Brayton Cycle: Efficiency and Performance.
	 Methods to Enhance Efficiency: Intercooling, Reheating, Regeneration.
	Hydro Power Plants
Week 10	 Basics of Hydropower: Components and Working.
	 Types of Hydro Turbines: Pelton, Francis, Kaplan.
	Efficiency and Energy Conversion.
	Thermodynamic Analysis of Power Plants
Week 11	Isentropic Efficiency and Work Ratio.
	Thermal Efficiency of Different Power Cycles.
	 Energy Balance and Heat Exchangers.
	Environmental and Economic Considerations
Week 12	 Environmental Impact of Power Plants: Emissions, Thermal Pollution.
Week 12	Renewable vs. Non-Renewable Sources.
	 Economic Analysis and Load Management.
	Advances in Power Plant Technology
Week 13	Combined Cycle Power Plants.
	Integration of Renewable Energy Sources.
Wook 14	Smart Grids and Future Trends in Power Generation.
Week 14	Case Studies and Practical Applications

	Case Studies of Modern Power Plants.
	 Problem-Solving Sessions on Thermodynamic Cycles.
	Real-Life Applications and Project Discussions.
	Review and Examination Preparation
Week 15	Comprehensive Review of All Topics Covered.
	Sample Problems and Solutions.
	 Examination Guidelines and Preparation Tips.
Week 16	Final Exam

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				
Week 5				
Week 6				
Week 7				

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Yunus A Çengel, Michael A Boles, Mehmet Kanoğlu, "Thermodynamics: an engineering approach", McGraw Hill Education, 9 th edition, 2019.	No		
Recommended Texts	Michael J. Moran, Howard N. Shapiro, Bruce R. Munson, and David P. DeWitt, "Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat	No		

	Transfer"	
Websites		

APPENDIX:

GRADING SCHEME مخطط الدر جات						
Group	Grade	التقدير	Marks (%)	Definition		
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0 – 49)	F — Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.