
Lecture -1 
 

  

1  

 

 

 

What is a Data structure? 

 

Data structure is one of the most fundamentals subject in Computer 

Science & in-depth understanding of this topic is very important 

especially when you are into development/programming domain where 

you build efficient software systems & applications. Definition- 

In computer science, a data structure is a data organization, management and 

storage format that enables efficient access and modification. 
In Simple words- 

Data Structure is a way in which data is stored on a computer. 

 

                   Data Structure is a way to store and organize data so that it can be 

used efficiently. 

Our Data Structure tutorial includes all topics of Data Structure such as 

Array, Pointer, Structure, Linked List, Stack, Queue,  etc. 

 

Why do we need Data structures? 

 

- Each Data Structure allows data to be stored in specific manner. 

- Data Structure allow efficient data search and retrieval. 

- Specific data structures are decided to work for specific problems. 

- It allows to manage large amount of data. 

 

 

 



Lecture -1 
 

  

2  

 

 

 

Note: The data structure is not any programming language like C, C++, java, 

etc. It is a set of algorithms that can be use in any programming language to 

structure the data in the memory. 

 

Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture -1 
 

  

3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

program = Algorithm + Data Structure 

 

What is Abstract Data Type? 

 

Definition: ADTs are entities that are definitions of data and 

operations but do not have implementation details. 
Two ways of looking at Data Structures- 

- Mathematical/Logical/Abstract Models/Views 

 

 



Lecture -1 
 

  

4  

- Implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture -1 
 

  

5  

Use of the Algorithms: 

Algorithms play a crucial role in various fields and have many applications. Some of 

the key areas where algorithms are used include: 

1. Computer Science: Algorithms form the basis of computer programming and are 

used to solve problems ranging from simple sorting and searching to complex tasks 

such as artificial intelligence and machine learning. 

2. Mathematics: Algorithms are used to solve mathematical problems, such as finding 

the optimal solution to a system of linear equations or finding the shortest path in a 

graph. 

3. Operations Research: Algorithms are used to optimize and make decisions in fields 

such as transportation, logistics, and resource allocation. 

4. Artificial Intelligence: Algorithms are the foundation of artificial intelligence and 

machine learning, and are used to develop intelligent systems that can perform tasks 

such as image recognition, natural language processing, and decision-making. 

5. Data Science: Algorithms are used to analyze, process, and extract insights from 

large amounts of data in fields such as marketing, finance, and healthcare. 

 

Representation of algorithm can written By:- 

In natural language (English) / pseudo-code / diagrams (Flow chart) / etc. 

Pseudo- code:- 

A mixture of natural language and high – level programming concepts 

that describes the main ideas behind a generic implementation of a data 

structure or algorithm. Pseudo- code is more structured than usual 

language but less formal than a programming language. 

  



Lecture -1 
 

  

6  

Ex.:- Algorithm to find the maximum number in array input: An array 

with n integers 

output: The Maximum element in A 

currentMax ← A[0]  

for i ← 1 to n-1 do 

if currentMax < A[i] then 

currentMax ← A[i] return 

currentMax 

 

 

 

 

Ex: An algorithm to find sum n numbers for N range 

1- Start 

2- Read N 

3- Sum =0 

4- For I= 1 to N 

                     sum = sum + I 

   next I 

 5- print  Sum 

6- End 

 

 

 



Lecture -1 
 

  

7  

What Makes a Good Algorithm? 

Suppose you have two possible algorithms or data structures that 

basically do the same thing; which is better? 

● Faster 

● Less space 

● Easier to code 

● Easier to maintain 

 

Fig.1 Classifications of data structures 

 

 

 

 

 

 

 

 

 

 

 



Lecture -1 
 

  

8  

 

Classification of data structure 

 

 

Data structures are broadly divided into two: 

 

1. Primitive data structures: These are the basic data structures and are 

directly operated upon by the machine instructions, which is in a 

primitive level. They are integers, floating point numbers, characters, 

string constants, pointers etc. These primitive data structures are the 

basis for the discussion of more sophisticated (non-primitive) data 

structures. 

2. Non-primitive data structures: It is a more sophisticated data structure 

emphasizing on structuring of a group of homogeneous (same type) or 

heterogeneous (different type) data items. Array, list, files, linked list, 

trees and graphs fall in this category. 

3.  

How to choose the suitable data structure:- 

For each set of data, there are different methods to organize these data in a 

particular data structure. To choose the suitable data structure, we must use 

the following criteria:- 

 

1- Data size and the required memory.  

2- The dynamic nature of the data. 

3- The required time to obtain any data element from the data structure. 

4- The programming approach and the algorithm that will be used to 

manipulate these data. 

 

Assignment -1- 

 Write an algorithm for the following 

a- Print the even& odd numbers in given range 



 

Lecture -2-Array 

 

  

 

Array  

 

Array is a linear data structure that stores a collection of elements of the same data type. Elements are 

allocated contiguous memory, allowing for constant-time access. Each element has a unique index 

number. 

Array is a collection of items of the same variable type that are stored at contiguous memory 

locations. It is one of the most popular and simple data structures used in programming 

 

Operations on Array: 

o Traversal: Iterating through the elements of an array. 

o Insertion: Adding an element to the array at a specific index. 

o Deletion: Removing an element from the array at a specific index. 

o Searching: Finding an element in the array by its value or index. 

 Types of Arrays: 

o One-dimensional array: A simple array with a single dimension. 

o Multidimensional array: An array with multiple dimensions, such as a matrix. 

 Applications of Array: 

o Storing data in a sequential manner 

o Implementing queues, stacks, and other data structures 

o Representing matrices and tables 

 

Types of Arrays 

 

There are majorly 4 types of arrays 

1. Fixed Size Array 

2. Dynamic Sized Array 

3. 1-Dimensional Array 

4. Multi-Dimensional Array 

 

 



 

Lecture -2-Array 

 

  

 

 

 

 

 

Types of Arrays on the basis of Dimensions 

 

There are majorly three types of arrays on the basis of dimensions: 

1. One-dimensional array (1-D arrays): 

You can imagine a 1d array as a row, where elements are stored one after another. 

  

 
 

 

Two-dimensional (2D) array: 

 

Multidimensional arrays can be considered as an array of arrays or as a matrix consisting of rows 

and columns. 

  



 

Lecture -2-Array 

 

  

 

 
 

Advantages of Array 

 Arrays allow random access to elements. This makes accessing elements by position 

faster. 

 Arrays have better cache locality which makes a pretty big difference in performance. 

 Arrays represent multiple data items of the same type using a single name. 

 Arrays are used to implement the other data structures like linked lists, stacks, queues,   

trees, graphs, etc. 

Disadvantages of Array 

 As arrays have a fixed size, once the memory is allocated to them, it cannot be 

increased or decreased, making it impossible to store extra data if required. An array of 

fixed size is referred to as a static array.  

 Allocating less memory than required to an array leads to loss of data. 

 An array is homogeneous in nature so, a single array cannot store values of different 

data types.  

 Arrays store data in contiguous memory locations, which makes deletion and insertion 

very difficult to implement. This problem is overcome by implementing linked lists, 

which allow elements to be accessed sequentially.   

 

 

 

 

 



 

Lecture -2-Array 

 

  

 

 

// search in unsorted array 

#include <iostream> 

using namespace std; 

 

// Function to implement search operation 

int findElement(int arr[], int n, int key) 

{ 

    int i; 

    for (i = 0; i <= n; i++) 

        if (arr[i] == key) 

            return i; 

    

} 

int main() 

{ 

    int arr[] = { 12, 34, 10, 6, 40 }; 

    int n = sizeof(arr) / sizeof(arr[0]); 

    // Using a last element as search element 

    int key = 10; 

        // Function call 

    int position = findElement(arr, n, key); 

       if (position <=n) 

      cout <<" Element found at position i=="<<position; 

    else 

        cout << "Element not Found "; 

          return 0; 

} 

 

 

 



 

Lecture -2-Array 

 

  

 

 

** Find min, max in an array 

 

#include <algorithm> 

using namespace std; 

int main() { 

      // Input array 

    int a[] = { 1, 423, 6, 46, 34, 23, 13, 53, 4 }; 

    int n = sizeof(a) / sizeof(a[0]); 

      sort(a, a + n); 

  for(int i=0;i<=n;i++) 

  cout<<a[i]<<"  "; 

  cout<<endl; 

    cout << "min=  " << a[0] << " max=  " << a[n - 1] << endl; 

      return 0; 

} 

 Note: sort() is an STL function that is used to sort the given range in desired order. It 

provides a simple and efficient way to sort the data in C++ but it only works on data 

structure which have random access to its elements such as vectors and arrays. It is 

defined inside <algorithm> header file. 

 

 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the 

parenthesized name of a type. The size is determined from the type of the operand. The result is an 

integer. If the type of the operand is a variable length array type, the operand is evaluated; otherwise, the 

operand is not evaluated and the result is an integer constant. 

 

 



 

Lecture -2-Array 

 

  

 

 

 

Array Operations 

 

 

Inserting Elements in an Array  

 

Searching Elements in an Array 

 

Deleting Elements in an Array  

 

 

 

Insertion Sort in C++ 

If there are n element and it requires (n-1) pass to sort them then, at each pass we insert current 

element in the appropriate position so that the element are in order. Some characteristics of insertion 

sort in C++. 

 

 

 

 

https://www.geeksforgeeks.org/why-does-accessing-an-array-element-take-o1-time/?ref=roadmap
https://www.geeksforgeeks.org/why-does-accessing-an-array-element-take-o1-time/?ref=roadmap


 

Lecture -2-Array 

 

  

 

 

In Bubble Sort algorithm 

 traverse from left and compare adjacent elements and the higher one is placed at right side.  

 In this way, the largest element is moved to the rightmost end at first.  

 This process is then continued to find the second largest and place it and so on until the data is 

sorted. 

 

 

 

#include <iostream> 

using namespace std; 

void bubbleSort(int arr[], int n) 

{ 

    int i, j; 

    bool swapped; 

    for (i = 0; i < n - 1; i++) { 

        swapped = false; 

        for (j = 0; j < n - i - 1; j++) { 

            if (arr[j] > arr[j + 1]) { 

                swap(arr[j], arr[j + 1]); 



 

Lecture -2-Array 

 

  

 

                swapped = true; 

            } 

        } 

        if (swapped == false) 

        break; 

    } 

} 

void printArray(int arr[], int size) 

{ 

    int i; 

    for (i = 0; i < size; i++) 

        cout << " " << arr[i]; 

} 

int main() 

{ 

    int arr[] = { 64, 34, 25, 12, 22, 11, 90 }; 

    int N = sizeof(arr) / sizeof(arr[0]); 

    for (int i = 0; i < N - 1; i++) 

    cout<<arr[i]<<" "; 

    cout<<endl; 

    bubbleSort(arr, N); 

    cout << "Sorted array: \n"; 

    printArray(arr, N); 

    return 0; 

} 

 



Lecture-3 

 

 

 

 

LINKED LIST DATA STRUCTURE 

 

 
 

The figure above shows a schematic diagram of a linked list with 3 nodes. Each node is pictured 

with two parts. The left part of each node contains the data items and the right part represents the 

address of the next node; there is an arrow drawn from it to the next node. The next pointer of the 

last node contains a special value, called the NULL pointer, which does not point to any address of 

the node. That is NULL pointer indicates the end of the linked list. START pointer will hold the 

address of the 1st node in the list START = NULL if there is no list (i.e.; NULL list or empty list). 
 

 

 
 

Explanation: 
 

Because each node of a linked list has two components, we need to declare each node as a class or 

struct. The data type of each node depends on the specific application—that is, what kind of data is 

being processed. However, the link component of each node is a pointer. The data type of this pointer 

variable is the node type itself. For the previous linked list, the definition of the node is as follows. 

(Suppose that the data type is int.) 

struct nodename 

{ 

int info;  

nodename *link; 

}; 

 



Lecture-3 

 

 

 

The variable declaration is as follows: 

nodename *head; 

 
Linked List: Some Properties 

To better understand the concept of a linked list and a node, some important properties of linked lists 

are described next. 

Consider the linked list in in the following figure 

Linked list with four nodes 

This linked list has four nodes. The address of the first node is stored in the pointer head. 

Each node has two components: info, to store the info, and link, to store the address of the next node. 

For simplicity, we assume that info is of type int. 

Suppose that the first node is at location 2000, the second node is at location 2800, the third node is 

at location 1500, and the fourth node is at location 3600. 

 The Table below shows the values of head and some other nodes in the list shown in this figure . 

 

Suppose that current is a pointer of the same type as the pointer head. Then the 

statement 

current = head; 

copies the value of head into current. Now consider the following statement: 

current = current->link; 

This statement copies the value of current->link, which is 2800, into current. 
 

Therefore, after this statement executes, current points to the second node in the list. (When working 

with linked lists, we typically use these types of statements to advance a pointer to the next node in 

the list.) See the figure . 



Lecture-3 

 

 

 

 

List after the statement current = current->link; executes 

 
The table shows the values of current, head, and some other nodes in Figure 

 

 

TABLE  Values of current, head, and some of the nodes of the linked list in Figure



Lecture-3 

 

 

 

TRAVERSING A LINKED LIST 

The basic operations of a linked list are as follows:  

 Search the list to determine whether a particular item is in the list 

 Insert an item in the list, display the elements of the list 

 Delete an item from the list. 

 

These operations require the list to be traversed. That is, given a pointer to the first node of the list, 

we must step through the nodes of the list. 

Suppose that the pointer head points to the first node in the list, and the link of the last node is NULL. 

We cannot use the pointer head to traverse the list because if we use the head to traverse the list, we 

would lose the nodes of the list. This problem occurs because the links are in only one direction. The 

pointer head contains the address of the first node, the first node contains the address of the second 

node, the second node contains the address of the third node, and so on. If we move head to the second 

node, the first node is lost (unless we save a pointer to this node). If we keep advancing head to the 

next node, we will lose all the nodes of the list (unless we save a pointer to each node before advancing 

head, which is impractical because it would require additional computer time and memory space to 

maintain the list). Therefore, we always want head to point to the first node. It now follows that we 

must traverse the list using another pointer of the same type. Suppose that current is a pointer of the 

same type as head. The following code traverses the list: 

current = head; 

while (current != NULL) 

{ 

//Process current 

current = current->link; 

} 
 

For example, suppose that head points to a linked list of numbers. The following code outputs the 

data stored in each node: 

current = head; 

while (current != NULL) 

{ 

cout << current->info << " "; 

current = current->link; 

} 

 

 

 

 

 

 

 

 



Lecture-3 

 

 

 

 

LINKED LIST ALGORITHMS 

This section discusses the algorithms of linked list data structures. Consider the following definition 

of a node. (For simplicity, we assume that the info type is int.) 

 
struct nodename 

{ 

int info; 

nodename *link; 

}; 

We will use the following variable declaration: 

nodename *head, *p, *q, *newNode; 

 

ALGORITHM FOR INSERTING A NODE 
 

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the 

new node. POS is the position where the new node is to be inserted. TEMP is a temporary pointer to 

hold the node address. 

 
Insert a Node at the beginning 

 

1. Input DATA to be inserted 

2. Create a NewNode 

3. NewNode -> DATA = DATA 

4. If (SATRT equal to NULL) 

(a) NewNode -> Link = NULL 

5. Else 

(a) NewNode -> Link = START 

6. START = NewNode 

7. Exit 

 
 
 
 
 
 
 
 



Lecture-3 

 

 

 

 
Insert a Node at the end 

 

1. Input DATA to be inserted 

2. Create a NewNode 

3. NewNode -> DATA = DATA 

4. NewNode -> Next = NULL 

5. If (SATRT equal to NULL) 

(a) START = NewNode 

6. Else 

(a) TEMP = START 

(b) While (TEMP -> Next not equal to NULL) 

(i) TEMP = TEMP -> Next 

7. TEMP -> Next = NewNode 

8. Exit 

 
Insert a Node at any specified position 

 

1. Input DATA and POS to be inserted 

2. initialize TEMP = START; and k = 0 

3. Repeat the step 3 while( k is less than POS) 

 

(a) TEMP = TEMP -> Next 

(b) If (TEMP is equal to NULL) 

(i) Display “Node in the list less than the position” 

(ii) Exit 

(c) k = k + 1 

4. Create a New Node 

5. NewNode -> DATA = DATA 

6. NewNode -> Next = TEMP -> Next 

7. TEMP -> Next = NewNode 

8. Exit 

Consider the linked list shown in this figure 

Suppose that p points to the node with info 65,  

and a new node with info 50 is to be created and inserted after p.  

 

 

 

 



Lecture-3 

 

 

 

Consider the following statements: 

newNode = new nodename; //create newNode 

newNode->info = 50; //store 50 in the new node 

newNode->link = p->link; 

p->link = newNode; 

 
The table shows the effect of these statements. 

Note that the sequence of statements to insert the node, that is, 

newNode->link = p->link; 

p->link = newNode; 

 

is very important because to insert newNode in the list we use only one pointer, p, to adjust the links 

of the nodes of the linked list. Suppose that we reverse the sequence of the statements and execute the 

statements in the following order: 

p->link = newNode; 

newNode->link = p->link; 

The Figure  shows the resulting list after these statements execute. 

 

From Figure above, it is clear that newNode points back to itself and the remainder of the list is lost. 

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to the node with 

info 34. (See Figure below) 



Lecture-3 

 

 

 

 

The following statements insert newNode between p and q: 

newNode->link = q; 

p->link = newNode; 

The order in which these statements execute does not matter. To illustrate this, suppose that we 

execute the statements in the following order: 

p->link = newNode; 

newNode->link = q; 

 
Table below shows the effect of these statements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture-3 

 

 

 

 

ALGORITHM FOR DELETING A NODE 

 

Consider the linked list shown in Figure  

Suppose that the node with info 34 is to be deleted from the list. The following 

statement removes the node from the list: 

p->link = p->link->link; 

The Figure shows the resulting list after the preceding statement executes. 

 

 

 

From the figure it is clear that the node with info 34 is removed from the list. 

However, the memory is still occupied by this node and this memory is inaccessible; that is, this node 

is dangling. To deallocate the memory, we need a pointer to this node. The following statements delete 

the node from the list and deallocate the memory occupied by this node: 

 

q = p->link; 

p->link = q->link; 

delete q; 

The table shows the effect of these statements. 



Lecture-3 

 

 

 

Deletion of a Node 

Suppose START is the first position in linked list. Let DATA be the element to be 

deleted. TEMP, HOLD is a temporary pointer to hold the node address. 

1. Input the DATA to be deleted 

2. if ((START -> DATA) is equal to DATA) 

(a) TEMP = START 

(b) START = START -> Next 

(c) Set free the node TEMP, which is deleted 

(d) Exit 

3. HOLD = START 

4. while ((HOLD -> Next -> Next) not equal to NULL)) 

(a) if ((HOLD -> NEXT -> DATA) equal to DATA) 

(i) TEMP = HOLD -> Next 

(ii) HOLD -> Next = TEMP -> Next 

(iii) Set free the node TEMP, which is deleted 

(iv) Exit 

(b) HOLD = HOLD -> Next 

5. if ((HOLD -> next -> DATA) == DATA) 

(a) TEMP = HOLD -> Next 

(b) Set free the node TEMP, which is deleted 

(c) HOLD -> Next = NULL 

(d) Exit 

6. Disply “DATA not found” 

7. Exit 

 

ALGORITHM FOR SEARCHING A NODE 
 

Suppose START is the address of the first node in the linked list and DATA is the 

information to be searched. After searching, if the DATA is found, POS will contain the 

corresponding position in the list. 

1. Input the DATA to be searched 

2. Initialize TEMP = START; POS =1; 

3. Repeat the step 4, 5 and 6 until (TEMP is equal to NULL) 

4. If (TEMP → DATA is equal to DATA) 

(a) Display “The data is found at POS” 

(b) Exit 

5. TEMP = TEMP → Next 

6. POS = POS+1 

7. If (TEMP is equal to NULL) 

(a) Display “The data is not found in the list” 

8. Exit 



Page 11 of 15 

Lecture -3 

 

  

 

ALGORITHM FOR DISPLAY ALL NODES 
 

Suppose START is the address of the first node in the linked list. Following algorithm will visit all 

nodes from the START node to the end. 

1. If (START is equal to NULL) 

(a) Display “The list is Empty” 

(b) Exit 

2. Initialize TEMP = START 

3. Repeat the step 4 and 5 until (TEMP == NULL ) 

4. Display “TEMP → DATA” 

5. TEMP = TEMP → Next 

6. Exit 
 

 

 

 



1 of 5 

Lecture-4 

 

 
 

 

The Stack data structure 

A stack is one of the most important and useful non-primitive linear data structure 

in computer science. It is an ordered collection of items into which new data items 

may be added/inserted and from which items may be deleted at only one end, 

called the top of the stack. As all the addition and deletion in a stack is done from 

the top of the stack, the last added element will be    first removed from the stack. 

That is why the stack is also called Last-in-First-out (LIFO). Note that the most 

frequently accessible element in the stack is the top most elements, whereas the 

least accessible element is the bottom of the stack. The operation of the stack can 

be illustrated as  In Figure the insertion (or addition) operation is referred to as 

push, and the deletion (or remove) operation as pop. A stack is said to be empty or 

underflow, if the stack contains no elements. At  this point the top of the stack is 

present at the bottom of the stack. And it is overflow when the stack becomes full, 

i.e., no other elements can be pushed onto the stack. At this point the top pointer is 

at the highest location of the stack. 

 



2 of 5 

Lecture-4 

 

 
 

 

OPERATIONS PERFORMED ON STACK 

 

The primitive operations performed on the stack are as follows: 

PUSH: The process of adding (or inserting) a new element to the top of the 

stack is called    PUSH operation. Pushing an element to a stack will add the new 

element at the top. After every push operation the top is incremented by one. If the 

array is full and no new element can be accommodated, then the stack overflow 

condition occurs. 

POP: The process of deleting (or removing) an element from the top of stack 

is called    POP operation. After every pop operation the stack is decremented by 

one. If there is no element in the stack and the pop operation is performed then the 

stack underflow condition occurs. 

 

STACK IMPLEMENTATION 

 

Stack can be implemented in two ways: 

1. Static implementation (using arrays) 

2. Dynamic implementation (linked list) 

Static implementation uses arrays to create stack. Static implementation using 

arrays is a very simple technique but is not a flexible way, as the size of the stack 

has to be declared during  the program design, because after that, the size cannot be 

varied (i.e., increased or decreased). Moreover static implementation is not an 

efficient method when resource optimization is concerned (i.e., memory utilization). 



3 of 5 

Lecture-4 

 

 
 

 

For example a stack is implemented with array size 50. That is before the stack 

operation begins, memory is allocated for the array of size 50. Now if there are only 

few elements (say 30) to be stored in the stack, then rest of the statically allocated 

memory (in this case 20) will be wasted, on the other hand if there are more number 

of elements  to be stored in the stack (say 60) then we cannot change the size array 

to increase its capacity. The above said limitations can be overcome by dynamically 

implementing (is also called linked list representation) the stack using pointers. 

 

STACK USING ARRAYS 

Implementation of stack using arrays is a very simple technique. Algorithm for 

pushing (or add or insert) a new element at the top of the stack and popping (or 

delete) an element from the stack is given below. 

 

 

Algorithm for push 

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, 

which will hold the data items. TOP is the pointer that points to the top most 

element of the stack.  

Let DATA is the data item to be pushed. 

1. If TOP = SIZE – 1, then: 

(a) Display “The stack is in overflow condition” 

(b) Exit 

2. TOP = TOP + 1 

3. STACK [TOP] = ITEM 

4. Exit 



4 of 5 

Lecture-4 

 

 
 

 

void push(void) 

{ 

int x; 

if(top==max-1) // Condition for checking If Stack is Full 

{ 

cout<<"\n stack overflow\n"; 

return; 

} 

cout<<"enter a no: "; 

cin>>x; 

a[++top]=x; //increment the top and inserting element 

 } 

 

Algorithm for pop 

Suppose STACK[SIZE] is a one dimensional array for implementing the stack, 

which will hold the data items. TOP is the pointer that points to the top most 

element of the stack. DATA is the popped (or deleted) data item from the top of the 

stack. 

1. If TOP is equal to -1, then 

(a) Display “The Stack is empty” 

(b) Exit 

2. DATA = STACK[TOP] 

3. TOP = TOP – 1 

4. Exit 

 



5 of 5 

Lecture-4 

 

 
 

 

void pop() { 

    if (top == -1) 

  { 

        cout << "Stack Underflow" << endl; 

     } 

    int x = A[top]; 

    top--; 

} 

Algorithm for display 

1. If TOP is equal to -1, then 

(a) Display “the stack is empty” 

(b) exit 

2. i  from TOP to 0 

(a) display Array[i] 

3. Exit 

void display(void) 

{ 

if(top==-1) 

{ 

cout <<"stack is empty\n";  

} 

cout<<"\n elements of Stack are : "; 

for(int i=0;i<=top;i++) 

{ 

cout << a[i] << " "; 



6 of 5 

Lecture-4 

 

 
 

 

} 

cout << endl << endl; 

return; 

} 



Lecture -2-Array 

 

  

7  

STACK USING LINKED LIST 

we have discussed the implementation of stack using array, i.e., static memory 

allocation. Implementation issues of the stack (Last In First Out - LIFO) using linked 

list is illustrated in following figures. 

 

Struct Node{ 

 Int data; 

Node *link; 

}; 

 

 

 

 

 

 



Lecture -2-Array 

 

  

8  

Algorithm for push operation 

1. The push operation would be similar to inserting a node at starting of the linked list 

2. So initially when the Stack (Linked List) is empty, the top pointer will be NULL. 

Let's suppose we have to insert the values 1, 2 & 3 in the stack. 

3. So firstly we will create a new Node using the new operator and return its address 

in temporary pointer ptr. 

4. Then we will insert the value 1 in the data part of the Node : ptr->data = value 

and make link part of the node equal to top : ptr->link=top. 

5. Finally we will make top = ptr to point it to the newly created node which will now 

be the starting of the linked list and top of our stack. 

6. Similarly we can push the values 2 & 3 in the stack which will give us a linked list 

of three nodes with top pointer pointing to the node containing value 3. 

 

 

 

 



Lecture -2-Array 

 

  

9  

 

Suppose TOP is a pointer, which is pointing towards the top most element of the stack. 

TOP is NULL when the stack is empty. DATA is the data item to be pushed. 

1. Input the DATA to be pushed 

2. Creat a New Node 

3. NewNode → DATA = DATA 

4. NewNode → Next = TOP 

5. TOP = NewNode 

6. Exit 

void push (int value) 

{ 

  Node *ptr = new Node(); 

  ptr->data = value; 

  ptr->link = top; 

  top = ptr; 

} 

 

 

Algorithm for pop operation 

1. The pop operation would be similar to deleting a node from the starting of a linked 

list. 

2. So we will take a temporary pointer ptr and equate it to the top pointer. 

3. Then we will move the top pointer to the next node i.e. top = top->link 

4. Finally, we will delete the node using delete operator and pointer ptr i.e delete(ptr) 



Lecture -2-Array 

 

  

10  

 

Suppose TOP is a pointer, which is pointing towards the topmost element of the stack. 

TOP is NULL when the stack is empty. TEMP is pointer variable to hold any nodes 

address. DATA is the information on the node which is just deleted. 

1. if (TOP is equal to NULL) 

(a) Display “The stack is empty” 

2. Else 

(a) TEMP = TOP 

(b) Display “The popped element TOP → DATA” 

(c) TOP = TOP → Next 

(d) TEMP → Next = NULL 

(e) Free the TEMP node 

3. Exit 

 

 

 

 

 

 

 

 

 



Lecture -2-Array 

 

  

11  

 

void pop ( ) 

{ 

 if ( isempty() ) 

  cout<<"Stack is Empty"; 

 else 

 { 

  Node *ptr = top; 

  top = top -> link; 

  delete(ptr); 

 } 

} 

Algorithm for display operation 

1. if (TOP is equal to NULL) 

(a) display “the stack is empty” 

(b) exit 

2. else 

(a) temp = top 

(b) while temp is not equal to null 

 (b.1) display temp->info  

(b.2) temp = temp->link 

3. exit 

 

 

 



Lecture -2-Array 

 

  

12  

 

 

void displayStack() 

{ 

 if ( isempty() ) 

  cout<<"Stack is Empty"; 

 else 

 { 

  Node *temp=top; 

  while(temp!=NULL) 

  {    

   cout<<temp->data<<" "; 

   temp=temp->link; 

  } 

  cout<<"\n"; 

 } 

 } 



 

1  

Lecture -6-Double Lined List 

DOUBLY LINKED LIST 

A doubly linked list is one in which all nodes are linked together by multiple links which help in 

accessing both the successor (next) and predecessor (previous) node for any arbitrary node within 

the list. Every nodes in the doubly linked list has three fields:  

LeftPointer,  

RightPointer  

DATA. 

 Fig. below shows a typical doubly linked list. 

 

 

LPoint will point to the node in the left side (or previous node) that is LPoint will hold the 

address of the previous node. RPoint will point to the node in the right side (or nex node) that is 

RPoint will hold the address of the next node. DATA will store the information of the node. 

 

 

 

 



 

2  

Lecture -6-Double Lined List 

 

Representation of doubly linked list 

A node in the doubly linked list can be represented in memory with the following declarations. 

Struct Node 

{ 

Int DATA; 

Node *next; 

Node *prev; 

}; 

 

All the operations performed on singly linked list can also be performed on doubly linked list.  

 

Following figure will illustrate the insertion and deletion of nodes. 

 

 

 

 



 

3  

Lecture -6-Double Lined List 

Algorithm for creating a doubly linked list (inserting at the end) 

1. Input the DATA to be inserted 

2. TEMP to create a new node 

3. TEMP->info=DATA 

4. TEMP->next=NULL 

5. if (START is equal to NULL) 

5.a. TEMP->prev=NULL 

5.b. START=TEMP 

5.c. exit 

6. else 

6.a. HOLD =START 

6.b. while(HOLD->next not equal to NULL) 

6.b.1 HOLD=HOLD->next 

6.c. HOLD->next=TEMP 

6.d. TEMP->prev=HOLD 

7. exit 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4  

Lecture -6-Double Lined List 

Algorithm for inserting a node at the beginning 

1. Input the DATA to be inserted 

2. TEMP to create a new node 

3. TEMP->prev=NULL 

4. TEMP->info=DATA 

5. TEMP->next=START 

6. if (START is equal to NUUl) 

6.a. START=TEMP 

6.b. exit 

7. START->prev=TEMP 

8. START=TEMP 

9. exit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5  

Lecture -6-Double Lined List 

 

Algorithm for inserting a node at a specific position 

 

Suppose START is the first position in linked list. Let DATA be the element to be 

inserted in the new node. POS is the position where the NewNode is to be inserted. TEMP 

is a temporary pointer to hold the node address. 

1. Input the DATA and POS 

2. Initialize TEMP = START; i = 0 

3. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL) 

4. TEMP = TEMP ->next; i = i +1 

5. If (TEMP not equal to NULL) and (i equal to POS) 

(a) Create a New Node 

(b) NewNode -> DATA = DATA 

(c) NewNode -> next = TEMP -> next 

(d) NewNode -> prev = TEMP 

(e) (TEMP -> next) -> prev = NewNode 

(f ) TEMP -> next = New Node 

6. Else 

(a) Display “Position NOT found” 

7. Exit 

 

 

 

 



 

6  

Lecture -6-Double Lined List 

Algorithm for deleting a node 

 

Suppose START is the address of the first node in the linked list. Let DATA be the Element to be 

deleted. TEMP, HOLD is the temporary pointer to hold the address of the node. 

1. Input the DATA to be deleted 

2. if ((START->DATA)is equal to DATA) 

(a) TEMP = START 

(b) START = STAR->next 

(c) START->prev=NULL 

(d) set free the node TEMP , which is deleted 

(e) Exit 

3. HOLD = START 

4. while((HOLD->next->next) not equal to NULL) 

(a)if (HOLD->next->DATA) equal to DATA) 

(a1) TEMP = HOLD->next 

(a2)HOLD->next=TEMP->next 

(a3) TEMP->next->prev=HOLD 

(a4) set free the node TEMP, which is deleted 

(a5) Exit 

(b) HOLD=HOLD->next 

5. if ((HOLD->next->DATA)==DATA) 

(a) TEMP=HOLD->next 

(b) set free the node TEMP, which is deleted 

(c) HOLD->next=NULL 

(d) Exit 

 



 

7  

Lecture -6-Double Lined List 

 

6. Display “DATA not found” 

7. Exit 

 

Algorithm for displaying the doubly linked list 

1. if (START is equal to NULL) 

1.a. display “The list is empty” 

1.b. exit 

2. TEMP=START 

3. while TEMP is not equal to NULL 

3.a. display TEMP->info 

3.b. TEMP=TEMP->next 

4. Exit 

 

 

 

Advantages: 

 The doubly linked list can be traversed in forward as well as backward directions, 

unlike singly linked list which can be traversed in the forward direction only. 

 Delete operation in a doubly-linked list is more efficient when compared to singly list 

when a given node is given. In a singly linked list, as we need a previous node to 

delete the given node, sometimes we need to traverse the list to find the previous 

node. This hits the performance. 

 Insertion operation can be done easily in a doubly linked list when compared to the 

singly linked list. 

 

 

 



 

8  

Lecture -6-Double Lined List 

Disadvantages: 

 As the doubly linked list contains one more extra pointer i.e. previous, the memory 

space taken up by the doubly linked list is larger when compared to the singly linked 

list. 

 Since two pointers are present i.e. previous and next, all the operations performed on 

the doubly linked list have to take care of these pointers.  

 

 

Assignment 

1. write an algorithm and a function to display a doubly linked list in reverse order. 

2. write an algorithm and a function to count the number of elements in the doubly linked list. 

3. write an algorithm and function for searching a number in doubly linked list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9  

Lecture -6-Double Lined List 

 

Difference Between Singly and Doubly Linked List 

Feature Singly Linked List Doubly Linked List 

Direction of Traversal 

Only forwards. You can 

traverse from the head to the 

end of the list. 

Both forwards and backwards. You can 

traverse from the head to the tail and vice 

versa. 

Memory Usage 
Less memory per node (one 

pointer per node). 

More memory per node (two pointers per 

node). 

Insertions/Deletions 

Efficient at the beginning; 

requires traversal from the 

head for other positions. 

Efficient at both the beginning and the 

end; easier insertions and deletions in the 

middle without full traversal. 

Complexity 

Simpler and requires less code 

to manage compared to 

doubly linked lists. 

More complex due to additional pointers, 

requiring more management and care in 

code. 

Use Case 

Suitable when memory is a 

concern and only forward 

traversal is needed. 

Preferred when frequent operations 

require elements to be accessed from 

both ends. 

Operations 

Typically slower for 

operations that involve 

elements at the end of the list. 

Faster for operations involving the end of 

the list due to the tail pointer. 

Head and Tail 

Management 
Only head pointer is used. 

Both head and tail pointers are used, 

providing immediate access to both ends 

of the list. 

 

 



 

10  

Lecture -6-Double Lined List 

 

 ++C في struct و  class الفرق بين استخدام 

 مخصصةيستخدمان لتعريف أنواع بيانات  struct و  class، كلا من ++C في لغة

(user-defined data  Types  ). 

  

 :ومع ذلك، هناك اختلاف رئيسي بينهما

 :الاختلاف الرئيسي

 الوصول إلى الأعضاء:  
o struct:  بشكل افتراضي، جميع أعضاءstruct تكون عامة (public)  ويمكن الوصول إليها من

 .أي مكان في البرنامج

o class:  بشكل افتراضي، جميع أعضاءclass خاصة تكون (private)  ولا يمكن الوصول إليها

 .(member functions) إلا من داخل الكلاس نفسه أو من خلال الدوال الأعضاء

 

 



 

1  

Lecture-6-Stack Application 

 

 

 

Expression 

 

Stack applications 

An application of stack is calculation of postfix expression. There are basically three types of 

notation for an expression (mathematical expression; An expression is defined as the number of 

operands or data items combined with several operators.) 

1. Infix notation: A+B 

2. Prefix notation: +AB 

3. Postfix notation: AB+ 

The infix notation is what we come across in our general mathematics, where the operator is 

written in-between the operands. For example: The expression to add two numbers A and B is 

written in infix notation as: A + B 

Note that the operator ‘+’ is written in between the operands A and B. 

The prefix notation is a notation in which the operator(s) is written before the operands, it is 

also called polish notation. The same expression when written in prefix notation looks like: + A B 

As the operator ‘+’ is written before the operands A and B, this notation is called prefix (pre means 

before). 

In the postfix notation the operator(s) are written after the operands, so it is called the 

postfix notation (post means after), it is also known as suffix notation or reverse polish notation. 

The above expression if written in postfix expression looks like: 

A B + 

The prefix and postfix notations are not really as awkward to use as they might look. For 

example, a C function to return the sum of two variables A and B (passed as argument) is called or 

invoked by the instruction: add(A, B) 

Note that the operator add (name of the function) precedes the operands A and B. 



 

2  

Lecture-6-Stack Application 

 

Because the postfix notation is most suitable for a computer to calculate any expression (due 

to its reverse characteristic), and is the universally accepted notation for designing Arithmetic and 

Logical Unit (ALU) of the CPU (processor). Therefore it is necessary to study the postfix notation. 

Moreover the postfix notation is the way computer looks towards arithmetic expression, any 

expression entered into the computer is first converted into postfix notation, stored in stack and then 

calculated. In the preceding sections we will study the conversion of the expression from one 

notation to other. 

 

Advantages of using postfix notation 

Human beings are quite used to work with mathematical expressions in infix notation, which 

is rather complex. One has to remember a set of nontrivial rules while using this notation and it must 

be applied to expressions in order to determine the final value. These rules include precedence,  

 

BODMAS (Order of Operations), and associativity. 

Using infix notation, one cannot tell the order in which operators should be applied. 

Whenever an infix expression consists of more than one operator, the precedence rules (BODMAS) 

should be applied to decide which operator (and operand associated with that operator) is evaluated 

first.  

But in a postfix expression operands appear before the operator, so there is no need for operator 

precedence and other rules. As soon as an operator appears in the postfix expression during scanning 

of postfix expression the topmost operands are popped off and are calculated by applying the 

encountered operator. Place the result back onto the stack; likewise at the end of the whole operation 

the final result will be there in the stack. 

 



 

3  

Lecture-6-Stack Application  

 

Notation Conversions 

Let A + B * C be the given expression, which is an infix notation.  

To calculate this expression for values 4, 3, 7 for A, B, respectively we must follow certain rule 

(called BODMAS in general mathematics) in order to have the right result. For example: 

A + B * C = 4 + 3 * 7 = 7 * 7 = 49 

The answer is not correct; multiplication is to be done before the addition, because multiplication 

has higher precedence over addition. This means that an expression is calculated according to the 

operator’s precedence not the order as they look like. The error in the above calculation occurred, 

since there were no braces to define the precedence of the operators. Thus expression A + B * C 

can be interpreted as A + (B * C). Using this alternative method we can convey to the computer 

that multiplication has higher precedence over addition. 

 

 

 

 



 

4  

Lecture-6-Stack Application  

 

Operator precedence 
 

 

 

 

The method of converting infix expression A + B * C to postfix form is: 

A + B * C Infix Form 

A + (B * C) Parenthesized expression 

A + (B C *) Convert the multiplication 

A (B C *) + Convert the addition 

A B C * + Postfix form 

 

 

 

 

 

 

 



 

5  

Lecture-6-Stack Application  

 

The rules to be remembered during infix to postfix conversion are: 

1. Parenthesize the expression starting from left to light. 

2. During parenthesizing the expression, the operands associated with operator having higher 

precedence are first parenthesized. For example in the above expression B * C is parenthesized 

first before A + B. 

3. The sub-expression (part of expression), which has been converted into postfix, is to be treated 

as single operand. 

4. Once the expression is converted to postfix form, remove the parenthesis. 

Problem 1. Give postfix form for A + [ (B + C) + (D + E) * F ] / G 

Solution. Evaluation order is 

A + { [ (BC +) + (DE +) * F ] / G} 

A + { [ (BC +) + (DE +) F *] / G} 

A + { [ (BC +) (DE + F * )+] / G} . 

A + [ BC + DE + F *+ G / ] 

ABC + DE + F * + G / +  

 

Problem 2. 

 Give postfix form for (A + B) * C / D + E ^ A / B Solution. Evaluation order is 

[(AB + ) * C / D ] + [ (EA ^) / B ] 

[(AB + ) * C / D ] + [ (EA ^) B / ] 

[(AB + ) C * D / ] + [ (EA ^) B / ] 

(AB + ) C * D / (EA ^) B / + 

AB + C * D / EA ^ B / + Postfix Form 

 

 

 

 

 



 

6  

Lecture-6-Stack Application  

 

Algorithm 

Suppose P is an arithmetic expression written in infix notation. This algorithm finds the equivalent 

postfix expression Q. Besides operands and operators, P (infix notation) may also contain left and 

right parentheses. We assume that the operators in P consists of only exponential ( ̂  ), multiplication 

( * ), division ( / ), addition ( + ) and subtraction ( - ). 

 The algorithm uses a stack to temporarily hold the operators and left parentheses. 

 The postfix expression Q will be constructed from left to right using the operands from P and 

operators, which are removed from stack. We begin by pushing a left parenthesis onto stack and 

adding a right parenthesis at the end of P. the algorithm is completed when the stack is empty. 

1. Scan P from left to right and repeat Steps 3 to 6 for each element of P until the stack is 

empty. 

2. If an operand is encountered, add it to Q. 

3. If a left parenthesis is encountered, push it onto stack. 

4. If an operator ⊗ is encountered, then: 

(a) Repeatedly pop from stack and add to Q each operator (on the top of stack), 

which has the same precedence as, or higher precedence than ⊗. 

(b) Add ⊗ to stack. 

5. If a right parenthesis is encountered, then: 

(a) Repeatedly pop from stack and add to Q (on the top of stack until a left parenthesis is 

encountered. 

(b) Remove the left parenthesis. [Do not add the left parenthesis to stack.] 

6. Exit. 

 

 

 

 

 

 



 

7  

Lecture-6-Stack Application  

 

Note. Special character ⊗ is used to symbolize any operator in P. 

Consider the following arithmetic infix expression P 

P = A + ( B / C  ) 

Figure below shows the character (operator, operand or parenthesis) scanned, status of the stack 

and postfix expression Q of the infix expression P. 

  

 

Converting infix to postfix expression 

(A + B) * C / D 

 

Postfix Form 

 

 



 

8  

Lecture-6-Stack Application  

 

Convert   A+B*C/(E-F)    to postfix +A/*BC-EF 

 

 

Evaluating postfix expression 

Following algorithm finds the RESULT of an arithmetic expression P written in postfix notation. 

The following algorithm, which uses a STACK to hold operands, evaluates P. 

Algorithm 

1. Scan P from left to right and repeat Steps 3 and 4 for each element of P. 

2. If an operand is encountered, put it on STACK. 

3. If an operator ⊗ is encountered, then: 

(a) Remove the two top elements of STACK, where A is the top element and B is the next- 

to-top element. 

(b) Evaluate B ⊗ A. 

(c) Place the result on to the STACK. 

4. Result equal to the top element on STACK. 

5. Exit. 

 



 

9  

Lecture-6-Stack Application  

 

Infix to prefix 

 

A+B*C/(E-F) 

 1. Reversed string:   (F-E)/C*B+A 

 2. Postfix of (F-E)/C*B+A:   FE-C/B*A+   
 3. Reversed string of FE-C/B*A+:   +A*B/C-EF 

 

Input String Output Stack Operator Stack 

(F-E)/C*B+A 
 

( 

(F-E)/C*B+A F ( 

(F-E)/C*B+A F (- 

(F-E)/C*B+A FE (- 

(F-E)/C*B+A FE- 
 

(F-E)/C*B+A FE- / 

(F-E)/C*B+A FE-C / 

(F-E)/C*B+A FE-C/ * 

(F-E)/C*B+A FE-C/B * 

(F-E)/C*B+A FE-C/B* + 

(F-E)/C*B+A FE-C/B*A + 

(F-E)/C*B+A FE-C/B*A+ 
 

 

 

 

 

 



 

10  

Lecture-6-Stack Application  

 

 

A+B*C 

 

 1. Reversed string:   C*B+A 
 2. Postfix of C*B+A:   CB*A+   

Input String Output Stack Operator Stack 

C*B+A C 
 

C*B+A C * 

C*B+A CB * 

C*B+A CB* + 

C*B+A CB*A + 

C*B+A CB*A+ 
 

 3. Reversed string of CB*A+:   +A*BC 



 

1  

Lecture-7 

 

The Queues 

A queue is logically a first in first out (FIFO or first come first serve) linear data structure. 

The concept of queue can be understood by our real life problems. For example a customer come 

and join in a queue to take the train ticket at the end (rear) and the ticket is issued from the front 

end of queue. That is, the customer who arrived first will receive the ticket first. It means the 

customers are serviced in the order in which they arrive at the service center. 

It is a homogeneous collection of elements in which new elements are added at one end called 

rear, and the existing elements are deleted from other end called front. 

The basic operations that can be performed on queue are 

1. Insert (or add) an element to the queue (push) 

 

2. Delete (or remove) an element from a queue (pop) 

 

 

 Push operation will insert (or add) an element to queue, at the rear end, by 

incrementing the array index.  

 Pop operation will delete (or remove) from the front end by decrementing the array 

index and will assign the deleted value to a variable.  

 Total number of elements present in the queue is (rear-front)+1, when implemented 

using arrays. Following figure will illustrate the basic operations on queue. 

 



 

2  

Lecture-7 

 

 
 
 

 



 

3  

Lecture-7 

 

 Operation on Queue: 

o Enqueue: Adds an element to the rear of the queue 

o Dequeue: Removes an element from the front of the queue 

o Peek: Retrieves the front element without removing it 

o IsEmpty: Checks if the queue is empty 

o IsFull: Checks if the queue is full 

 

 

Queue can be implemented in two ways: 

1. Using arrays (static) 

2. Using pointers (Linked List) (dynamic) 

Implementation of queue using pointers will be discussed later. Let us discuss underflow and 

overflow conditions when a queue is implemented using arrays. 

If we try to pop (or delete or remove) an element from queue when it is empty, underflow 

occurs. It is not possible to delete (or take out) any element when there is no element in the 

queue. 

Suppose maximum size of the queue (when it is implemented using arrays) is 50. If we try to 

push (or insert or add) an element to queue, overflow occurs. When queue is full it is naturally 

not possible to insert any more elements. 

 

https://www.geeksforgeeks.org/basic-operations-for-queue-in-data-structure/


 

4  

Lecture-7 

 

ALGORITHM FOR QUEUE OPERATIONS 

Let Q be the array of some specified size say SIZE 

 

 
1- INSERTING AN ELEMENT INTO THE QUEUE 

1. Initialize front= –1, rear = –1 

2. Input the value to be inserted and assign to variable “data” 

3. If (rear = = SIZE-1) 

(a) Display “Queue overflow” 

(b) Exit 

4. Else 

(a) Rear = rear +1 

5. Q[rear] = data 

6. Exit 

 



 

5 
 

Lecture-7 

 
 

2- DELETING AN ELEMENT FROM QUEUE 

1. If (rear< front) or (front and rear is equal to -1) 

(a) Front = –1, rear = –1 

(b) Display “The queue is empty” 

(c) Exit 

2. Else 

(a) Data = Q[front] 

3. Front = front +1 

4. Exit 

 

 
3- DISPLAY THE ELEMENTS OF QUEUE 

1. If (rear< front) or (front and rear is equal to -1) 

(a) Display “The queue is empty” 

(b) Exit 

2. Else 

(a) i=front to rear 

(1) display Queue[i] 

(b) Exit 

3. Exit 

 

 

 

 

 

 

 

 

 



 

6 
 

Lecture-7 

QUEUE USING LINKED LIST 

Queue is a First In First Out [FIFO] data structure. We have discussed the implementation of 

stack using array, ie; static memory allocation. Implementation issues of the stack (Last In First 

Out - LIFO) using linked list is illustrated in the following figures. 

 

 

 
 

 

 

 



 

7 
 

Lecture-7 

ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE 

 

REAR is a pointer in queue where the new elements are added.  

FRONT is a pointer, which is pointing to the queue where the elements are popped.  

DATA is an element to be pushed. 

 

1. Input the DATA element to be pushed 

2. Create a New Node 

3. NewNode → DATA = DATA 

4. NewNode → Next = NULL 

5. If(front is equal to NULL and rear is equal to NULL) 

(a) front = rear = NewNode 

(b) exit 

6. rear → next = NewNode 

7. rear = NewNode 

7. Exit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

Lecture-7 

ALGORITHM FOR POPPING AN ELEMENT FROM A QUEUE 

REAR is a pointer in queue where the new elements are added.  

FRONT is a pointer, which is pointing to the queue where the elements are popped. 

 DATA is an element popped from the queue. 

 

1. declare temp = FRONT 

2. If (FRONT is equal to NULL) 

(a) Display “The Queue is empty” 

3. Else if (FRONT is equal to REAR) 

(a) FRONT = REAR = NULL 

4. Else 

(a) FRONT = FRONT → next 

5. delete temp 

6. Exit 

 

 



 

1  

Lecture-8 

 
 

 

 

CIRCULAR QUEUE 
 

Suppose a queue Q has maximum size 5, say 5 elements pushed and 2 elements popped. 

 

 

Now if we attempt to add more elements, even though 2 queue cells are free, the 

elements cannot be pushed. Because in a queue, elements are always inserted at the rear end 

and hence rear points to last location of the queue array Q[4]. That is queue is full (overflow 

condition) though it is empty. This limitation can be overcome if we use circular queue. 

In circular queues the elements Q[0],Q[1],Q[2] ..... Q[n – 1] is represented in a 

circular fashion with Q[1] following Q[n]. A circular queue is one in which the insertion of a 

new element is done at the very first location of the queue if the last location at the queue is full. 

Suppose Q is a queue array of 6 elements. Push and pop operation can be performed on 

circular. The following figures will illustrate the same. 

 

 

 

 

 



 

2  

Lecture-8 

 

 

 



 

3  

Lecture-8  
 

 

After inserting an element at last location Q[5], the next element will be inserted at 

 
the very first location (i.e., Q[0]) that is circular queue is one in which the first element 

comes just after the last element. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4  

Lecture-8 
 

 

 

 

 
 

 

 At any time the position of the element to be inserted will be calculated by the 

relation  

Rear = (Rear + 1) % SIZE 

 After deleting an element from circular queue the position of the front end is 

calculated by the relation  

Front= (Front + 1) % SIZE 

 After locating the position of the new element to be inserted, rear, compare it 

with  front.  

If (rear = front), the queue is full and cannot be inserted anymore. 

 

 

 

 



 

5  

Lecture-8  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
CIRCULAR QUEUE ALGORITHMS 

 

Let Q be the array of some specified size say SIZE. FRONT and REAR are two pointers 

where the elements are deleted and inserted at two ends of the circular queue. DATA is the 

element to be inserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6  

Lecture-8  

 

 

Inserting an element to circular Queue 

1. If [(rear+1) % Size = = front] 

(a) Display “Queue is full” 

(b) Exit 

2. Input the value to be inserted and assign to variable “DATA” 

3. If (front is equal to – 1) 

(a) front = 0 

4. rear = (rear + 1) % Size 

5. Q[rear] = DATA 

6. Exit 

 
Deleting an element from a circular queue 

1. If (FRONT is equal to – 1) 

(a) Display “Queue is empty” 

(b) Exit 

2. If (REAR is equal to FRONT) 

(a) FRONT = –1 

(b) REAR = –1 

3. Else 

(a) DATA = Q[FRONT] 

(b) FRONT = (FRONT +1) % SIZE 

4. Exit 

 

 

 

 

 

 



 

7  

Lecture-8  

 

 

 
Algorithm display element of a circular queue 

 

display()   

{   

    int i=front;   

    if(front==-1 && rear==-1)   

    {   

        Cout<<"\n Queue is empty..";   

    }   

    else   

    {   

        Cout<<"\nElements in a Queue are :";   

        while(i<=rear)   

        {   

            Cout<<"%d,", queue[i]);   

            i=(i+1)%max;   

        }   

    }   

}   

 

Assignment 

 Program to find the odd, even number in circular queue 

 Program to find the positive, negative number in circular queue 

 

 



 

1  

Non Linear Data Structures 

The Trees 

One of the important non-liner data structure in computer science is Trees. Many real life 

problems can be represented and solved using trees. 

Trees are very flexible, versatile and powerful non-liner data structure that can be used to 

represent data items possessing hierarchical relationship between the grand father and his 

children and grandchildren as so on. 

 

The Tree data structure is similar to Linked Lists in that each node contains data and can be linked 

to other nodes. 

We have previously covered data structures like Arrays, Linked Lists, Stacks, and Queues. These 

are all linear structures, which means that each element follows directly after another in a 

sequence. Trees however, are different. In a Tree, a single element can have multiple 'next' 

elements, allowing the data structure to branch out in various directions. 

 

 

 

https://www.w3schools.com/dsa/dsa_theory_linkedlists.php


 

2  

A tree is an ideal data structure for representing hierarchical data. A tree can be theoretically 

defined as a finite set of one or more data items (or nodes) such that: 

1. There is a special node called the root of the tree. 

2. Removing nodes (or data item) are partitioned into number of mutually 

exclusive (i.e., disjoined) subsets each of which is itself a tree, are called sub 

tree. 

 

 

BASIC TERMINOLOGIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3  

 

 

 

Basic Terminologies In Tree Data Structure: 

 Parent Node: The node which is an immediate predecessor of a node is called the parent 

node of that node. {B} is the parent node of {D, E}. 

 Child Node: The node which is the immediate successor of a node is called the child node of 

that node. Examples: {D, E} are the child nodes of {B}. 

 Root Node: The topmost node of a tree or the node which does not have any parent node is 

called the root node. {A} is the root node of the tree. A non-empty tree must contain exactly 

one root node and exactly one path from the root to all other nodes of the tree. 

 Leaf Node or External Node: The nodes which do not have any child nodes are called leaf 

nodes. {I, J, K, F, G, H} are the leaf nodes of the tree. 

 Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called 

Ancestors of that node. {A,B} are the ancestor nodes of the node {E} 

 Sibling: Children of the same parent node are called siblings. {D,E} are called siblings. 

 Level of a node: The count of edges on the path from the root node to that node. The root 

node has level 0. 

 Internal node: A node with at least one child is called Internal Node. 

 Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node. 

 Subtree: Any node of the tree along with its descendant. 



 

4  

 Level – Count nodes in a path to reach a destination node. Example- Level of node D is 2 as 

nodes A and B form the path. 

 Height – Number of edges to reach the destination node, Root is at height 0.  

 Degree of a node – Number of children of a particular parent. Example- Degree of A is 2 and 

Degree of C is 3. Degree of I is 0. 

 

 

Types of Trees 

Trees are a fundamental data structure in computer science, used to represent hierarchical 

relationships. This tutorial covers several key types of trees. 

Binary Trees: Each node has up to two children, the left child node and the right child node. This 

structure is the foundation for more complex tree types like Binay Search Trees and AVL Trees. 

Binary Search Trees (BSTs): A type of Binary Tree where for each node, the left child node has 

a lower value, and the right child node has a higher value. 

AVL Trees: A type of Binary Search Tree that self-balances so that for every node, the difference 

in height between the left and right subtrees is at most one. This balance is maintained through 

rotations when nodes are inserted or deleted. 

 

 

 

 

 

 

 

 

 



 

5  

 

Binary trees 

A binary tree is a tree in which no node can have more than two children. Typically these 

children are described as “left child” and “right child” of the parent node. 

A binary tree T is defined as a finite set of elements, called nodes, such that: 

1- T is empty (i.e., if T has no nodes called the null tree or empty tree). 

2- T contains a special node R, called the root of T, and the remaining nodes of T form an 

ordered pair of disjoined binary trees T1 and T2, and they are called left and right sub 

tree of  R. if T1 is non empty then its root is called the left successor of R, similarly if 

T2 is non empty then its root is called the right successor of R. 

 

 

Consider a binary tree T in Fig. 8.3. Here ‘A’ is the root node of the binary tree T. Then ‘B’ 

is the left child of ‘A’ and ‘C’ is the right child of ‘A’ i.e., ‘A’ is a father of ‘B’ and ‘C’. The 

node ‘B’ and ‘C’ are called brothers, since they are left and right child of the same father. If a 

node has no child then it is called a leaf node. Nodes D, H,I,F,J are leaf node in Fig. 8.3. 

 

 



 

6  

Types of Binary Trees 

 

 

Types of Binary Tree On the basis of the completion of levels: 

1. Complete Binary Tree 

2. Perfect Binary Tree 

3. Balanced Binary Tree 

 

Complete Binary Tree 

 A Binary Tree is a Complete Binary Tree if all the levels are completely filled except possibly 

the last level and the last level has all keys as left as possible. 

A complete binary tree is just like a full binary tree, but with two major differences: 

 Every level except the last level must be completely filled. 

 All the leaf elements must lean towards the left. 

 The last leaf element might not have a right sibling i.e. a complete binary tree doesn’t have to 

be a full binary tree. 

 

 



 

7  

 

 

 

 Perfect Binary Tree 

A Binary tree is a Perfect Binary Tree in which all the internal nodes have two children and all 

leaf nodes are at the same level.  

The following are examples of Perfect Binary Trees.  

A perfect binary tree is a type of binary tree in which every internal node has exactly two child 

nodes and all the leaf nodes are at the same level. 

 

 

 

 

 

Strictly binary:- The tree is said to be strictly binary tree, if every non-leaf made in a 

binary tree has non-empty left and right sub trees. The tree in Fig. 8.4 is strictly binary tree, 

whereas the tree in Fig. 8.3 is not. That is every node in the strictly 

 



 

8  

 

 

 

 

 

 

 

 

 



 

9  

Special Types of Trees in Data Structure based on the nodes’ values: 

1. Binary Search Tree 

A binary Search Tree is a node-based binary tree data structure that has the following 

properties: 

 The left subtree of a node contains only nodes with keys lesser than the node’s key. 

 The right subtree of a node contains only nodes with keys greater than the node’s key. 

 The left and right subtree each must also be a binary search tree. 

 

 

 

 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/binary-search-tree-data-structure/


 

10  

 

The main application of a 2-tree is to represent and compute any algebraic expression using 

binary operation. 

For example, consider an algebraic expression E. 

E = (a + b) / ((c – d)*e) 

E can be represented by means of the extended binary tree T as shown in Fig. 8.5. 

Each variable or constant in E appears as an internal node in T whose left and right sub tree 

corresponds to the operands of the operation. 

 

 

 

 

 

 

 

 

 

 



 

11  

If a binary tree has only left sub trees, then it is called left skewed binary tree. Fig.8.7 (a) is a 

left skewed binary tree. 

 

 

If a binary tree has only right sub trees, then it is called right skewed binary 

tree. Fig. 8.7(b) is a right skewed ائل او منحرفم binary tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12  

Binary Tree Traversal 

 

 

 

The item insertion, deletion, and lookup operations require that the binary tree be traversed. 

Thus, the most common operation performed on a binary tree is to traverse the binary tree, or 

visit each node of the binary tree. As you can see from the diagram of a binary tree, the traversal 

must start at the root node because there is a pointer to the root node. For each node, we have two 

choices: 

• Visit the node first. 

• Visit the sub trees first. 

These choices lead to three different traversals of a binary tree— 

Inorder, 

 preorder 

postorder 

 

 

 



 

13  

 

 

Inorder Traversal(LVR) 

In an inorder traversal, the binary tree is traversed as follows: 

1. Traverse the left subtree. 

2. Visit the node. 

3. Traverse the right subtree. 

Preorder Traversal(VLR) 

In a preorder traversal, the binary tree is traversed as follows: 

1. Visit the node. 

2. Traverse the left subtree. 

3. Traverse the right subtree. 

 

 

Postorder Traversal(LRV) 

In a postorder traversal, the binary tree is traversed as follows: 

1. Traverse the left subtree. 

2. Traverse the right subtree. 

3. Visit the node. 

 

 

 

 

 



 

14  

 

 

Inorder sequence: B D A C 

Similarly, the preorder and postorder traversals output the nodes in the following order: 

Preorder sequence: A B D C 

Postorder sequence: D B C A 

 

 

 

 

 

 

 

 



 

15  

 

 

 

The preorder traversal of a binary tree in Fig. is A, B, D, E, H, I, C, F, G, J.  

The in order traversal of a binary tree in Fig. is D, B, H, E, I, A, F, C, J, G. 

The post order traversal of a binary tree in Fig. 8.12 is D, H, I, E, B, F, J, G, C, A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16  

Preorder: The node we are on right now is visited first and then we visit left child (as well as the 

whole left subtree) followed by its right subtree (as well as the whole right subtree). I denote 

Preorder traversal by VLR : (V)isit the current node, then visit its (L)eft child, and then visit 

(R)ight child node. 

So, for the below tree, let's see what the Preorder traversal would look like this: 

29 -> 20 -> 12 -> 7 -> 15 -> 26 -> 31 -> 30 

 

       VLR 

        29  

     /      \ 

    VLR      VLR 

    20       31 

   /  \       /  

  VLR  VLR  VLR 

  12   26   30 

 /  \       

VLR   VLR 

7    15  

 

Inorder: The (L)eft childnode and left subtree of the current node is visited first, followed by the 

(V)isiting the current node and then visit the (R)ight childnode and right subtree. Let's denote 

Inorder traversal by LVR. 

 

 

 

 

 



 

17  

For the tree below, the Inorder traversal would look like: 

7 -> 12 -> 15 -> 20 -> 26 -> 29 -> 30 -> 31. 

       LVR 

        29  

     /      \ 

    LVR      LVR 

    20       31 

   /  \       /  

  LVR  LVR  LVR 

  12   26   30 

 /  \       

LVR  LVR 

7    15  

One interesting property of Inorder traversal is that, for a BST it gives the items in sorted order 

(increasing order). 

Postorder: Here the current node is visited at the end after visiting its left subtree followed by its 

right subtree. I'd denote Postorder traversal as LVR. 

 

 

 

 

 

 

 

 



 

18  

Postorder traversal of the below tree would look like: 

7 -> 15 -> 12 -> 26 -> 20 -> 30 -> 31 -> 29 

       LRV 

        29  

     /      \ 

    LRV      LRV 

    20       31 

   /  \       /  

  LRV  LRV  LRV 

  12   26   30 

 /  \       

LRV   LRV 

7    15  

 

 

 

https://yongdanielliang.github.io/animation/web/BST.html 

 

 

 

https://yongdanielliang.github.io/animation/web/BST.html


 

19  

 

 

 

 

Search Operation 

Whenever an element is to be searched, start searching from the root node. Then if the data is less 

than the key value, search for the element in the left subtree. Otherwise, search for the element in 

the right subtree. Follow the same algorithm for each node. 

1.START 

2. Check whether the tree is empty or not 

3. If the tree is empty, search is not possible 

4. Otherwise, first search the root of the tree. 

5. If the key does not match with the value in the root,  

   search its subtrees. 

6. If the value of the key is less than the root value,  

   search the left subtree 

7. If the value of the key is greater than the root value,  

   search the right subtree. 

8. If the key is not found in the tree, return unsuccessful search. 

9. END 

 

 

 

 

 

 

 



 

20  

 

 

 

 

 

Insertion Operation 

Whenever an element is to be inserted, first locate its proper location. Start searching from the 

root node, then if the data is less than the key value, search for the empty location in the left 

subtree and insert the data. Otherwise, search for the empty location in the right subtree and insert 

the data. 

Algorithm 

 

1. START 

2. If the tree is empty, insert the first element as the root node of the  

   tree. The following elements are added as the leaf nodes. 

3. If an element is less than the root value, it is added into the left  

   subtree as a leaf node. 

4. If an element is greater than the root value, it is added into the right  

   subtree as a leaf node. 

5. The final leaf nodes of the tree point to NULL values as their  

   child nodes. 

6. END 

 

 

 

 

 

 



 

21  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 


