
Microprocessor

MSc. Royida A. Ibrahem Alhayali

Diyala University / College of Engineering

Computer Engineering department

2nd Stage

www.engineering.uodiyala.edu.iqhttp://

http://www.engineering.uodiyala.edu.iq/
http://www.engineering.uodiyala.edu.iq/

2

Program controlled semiconductor device (IC) which fetches (from
memory), decodes and executes instructions.

It is used as CPU (Central Processing Unit) in computers.

Microprocessor
 Royida A. Ibrahem

Alhayali

Microprocessor
 Royida A. Ibrahem

Alhayali

First Generation
Between 1971 – 1973

PMOS technology, non compatible with TTL
4 bit processors 16 pins

8 and 16 bit processors 40 pins
Due to limitations of pins, signals are

multiplexed

Second Generation
During 1973

NMOS technology Faster speed, Higher
density, Compatible with TTL

4 / 8/ 16 bit processors 40 pins
Ability to address large memory spaces

and I/O ports
Greater number of levels of subroutine

nesting
Better interrupt handling capabilities

Intel 8085 (8 bit processor)

Third Generation
During 1978
HMOS technology Faster speed, Higher
packing density
16 bit processors 40/ 48/ 64 pins
Easier to program
Dynamically relatable programs
Processor has multiply/ divide arithmetic
hardware
More powerful interrupt handling
capabilities
Flexible I/O port addressing

Intel 8086 (16 bit processor)

Fourth Generation
During 1980s
Low power version of HMOS technology
(HCMOS)
32 bit processors
Physical memory space 224 bytes = 16 Mb
Virtual memory space 240 bytes = 1 Tb
Floating point hardware
Supports increased number of addressing
modes

Intel 80386

Fifth Generation Pentium

3

Functional blocks

Flag
Register

Timing and
control unit

Register array or
internal memory

Instruction
decoding unit

PC/ IP

ALU

Control Bus Address Bus

Data Bus

4

Computational Unit;
performs arithmetic and
logic operations

Various conditions of the
results are stored as

status bits called flags in
flag register

Internal storage of data

Generates the
address of the
instructions to be
fetched from the
memory and send
through address
bus to the
memory

Decodes instructions; sends
information to the timing and
control unit

Generates control signals for
internal and external
operations of the
microprocessor

Microprocessor
 Royida A. Ibrahem

Alhayali

Overview

First 16- bit processor released by
INTEL in the year 1978.

Originally HMOS, now manufactured
using HMOS III technique.

Approximately 29, 000 transistors, 40
pin DIP, 5V supply.

Does not have internal clock; external
asymmetric clock source with 33%
duty cycle.

20-bit address to access memory
can address up to 220 = 1 megabytes of
memory space.

 Contains About 29000 Transistors.

Addressable memory space is
organized in to two banks of 512 kb
each; Even (or lower) bank and Odd (or
higher) bank. Address line A0 is used to
select even bank and control signal 𝐁𝐇𝐄
is used to access odd bank

Uses a separate 16 bit address for I/O
mapped devices can generate 216 =
64 k addresses.

Operates in two modes: minimum mode
and maximum mode, decided by the
signal at MN and 𝐌𝐗 pins.

5

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

6

Common signals

AD0-AD15 (Bidirectional)

Address/Data bus

Low order address bus; these are
multiplexed with data.

When AD lines are used to transmit
memory address the symbol A is used
instead of AD, for example A0-A15.

When data are transmitted over AD lines
the symbol D is used in place of AD, for
example D0-D7, D8-D15 or D0-D15.

A16/S3, A17/S4, A18/S5, A19/S6

High order address bus. These are
multiplexed with status signals

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

7

Common signals

BHE (Active Low)/S7 (Output)

Bus High Enable/Status

It is used to enable data onto the most
significant half of data bus, D8-D15. 8-bit
device connected to upper half of the
data bus use BHE (Active Low) signal. It
is multiplexed with status signal S7.

 MN/ MX

MINIMUM / MAXIMUM

This pin signal indicates what mode the
processor is to operate in.

 RD (Read) (Active Low)

The signal is used for read operation.
It is an output signal.
It is active when low.

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

8

Common signals

TEST

𝐓𝐄𝐒𝐓 input is tested by the ‘WAIT’
instruction.

8086 will enter a wait state after
execution of the WAIT instruction and
will resume execution only when the
𝐓𝐄𝐒𝐓 is made low by an active hardware.

This is used to synchronize an external
activity to the processor internal
operation.

 READY

This is the acknowledgement from the
slow device or memory that they have
completed the data transfer.

The signal made available by the devices
is synchronized by the 8284A clock
generator to provide ready input to the
8086.

The signal is active high.

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

9

Common signals

RESET (Input)

Causes the processor to immediately
terminate its present activity.

The signal must be active HIGH for at
least four clock cycles.

CLK

The clock input provides the basic timing
for processor operation and bus control
activity. Its an asymmetric square wave
with 33% duty cycle.

INTR Interrupt Request

This is a triggered input. This is sampled
during the last clock cycles of each
instruction to determine the availability
of the request. If any interrupt request is
pending, the processor enters the
interrupt acknowledge cycle.

This signal is active high and internally
synchronized.

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

10

Min/ Max Pins

The 8086 microprocessor can work in two
modes of operations : Minimum mode and
Maximum mode.

In the minimum mode of operation the
microprocessor do not associate with any
co-processors and can not be used for
multiprocessor systems.

In the maximum mode the 8086 can work
in multi-processor or co-processor
configuration.

Minimum or maximum mode operations
are decided by the pin MN/ MX(Active low).

When this pin is high 8086 operates in
minimum mode otherwise it operates in
Maximum mode.

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

Pins 24 -31

For minimum mode operation, the MN/ 𝐌𝐗 is tied
to VCC (logic high)

8086 itself generates all the bus control signals

DT/𝐑 (Data Transmit/ Receive) Output signal from the
processor to control the direction of data flow
through the data transceivers

𝐃𝐄𝐍 (Data Enable) Output signal from the processor
used as out put enable for the transceivers

ALE (Address Latch Enable) Used to demultiplex the
address and data lines using external latches

M/𝐈𝐎 Used to differentiate memory access and I/O
access. For memory reference instructions, it is
high. For IN and OUT instructions, it is low.

𝐖𝐑 Write control signal; asserted low Whenever
processor writes data to memory or I/O port

𝐈𝐍𝐓𝐀 (Interrupt Acknowledge) When the interrupt
request is accepted by the processor, the output is
low on this line.

11

Minimum mode signals Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals

HOLD Input signal to the processor form the bus masters
as a request to grant the control of the bus.

Usually used by the DMA controller to get the
control of the bus.

HLDA (Hold Acknowledge) Acknowledge signal by the
processor to the bus master requesting the control
of the bus through HOLD.

The acknowledge is asserted high, when the
processor accepts HOLD.

12

Minimum mode signals

Pins 24 -31

For minimum mode operation, the MN/ 𝐌𝐗 is tied
to VCC (logic high)

8086 itself generates all the bus control signals

Microprocessor
 Royida A. Ibrahem

Alhayali

Pins and Signals
8086 Microprocessor

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝑺𝟎, 𝑺𝟏, 𝑺𝟐 Status signals; used by the 8086 bus controller to
generate bus timing and control signals. These are
decoded as shown.

13

Maximum mode signals

Pins and Signals
8086 Microprocessor

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝑸𝑺𝟎, 𝑸𝑺𝟏 (Queue Status) The processor provides the status
of queue in these lines.

The queue status can be used by external device to
track the internal status of the queue in 8086.

The output on QS0 and QS1 can be interpreted as
shown in the table.

14

Maximum mode signals

Pins and Signals

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝐑𝐐/ 𝐆𝐓𝟎,
𝐑𝐐/ 𝐆𝐓𝟏

(Bus Request/ Bus Grant) These requests are used
by other local bus masters to force the processor
to release the local bus at the end of the
processor’s current bus cycle.

These pins are bidirectional.

The request on 𝐆𝐓𝟎 will have higher priority than
𝐆𝐓𝟏

15

𝐋𝐎𝐂𝐊 An output signal activated by the LOCK prefix
instruction.

Remains active until the completion of the
instruction prefixed by LOCK.

The 8086 output low on the 𝐋𝐎𝐂𝐊 pin while

executing an instruction prefixed by LOCK to
prevent other bus masters from gaining control of
the system bus.

Maximum mode signals Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

16

Execution Unit (EU)

EU executes instructions that have
already been fetched by the BIU.

BIU and EU functions separately.

Bus Interface Unit (BIU)

BIU fetches instructions, reads data
from memory and I/O ports, writes

data to memory and I/ O ports.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

17

Bus Interface Unit (BIU)

Dedicated Adder to generate
20 bit address

Four 16-bit segment
registers

Code Segment (CS)
Data Segment (DS)
Stack Segment (SS)
Extra Segment (ES)

Segment Registers >>

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

18

Bus Interface Unit (BIU)

Segment
Registers

8086’s 1-megabyte
memory is divided
into segments of up
to 64K bytes each.

Programs obtain access
to code and data in the
segments by changing
the segment register
content to point to the
desired segments.

The 8086 can directly
address four segments
(256 K bytes within the 1
M byte of memory) at a
particular time.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

19

Bus Interface Unit (BIU)

Segment
Registers

Code Segment Register

16-bit

CS contains the base or start of the current code segment;
IP contains the distance or offset from this address to the
next instruction byte to be fetched.

BIU computes the 20-bit physical address by logically
shifting the contents of CS 4-bits to the left and then
adding the 16-bit contents of IP.

That is, all instructions of a program are relative to the
contents of the CS register multiplied by 16 and then offset
is added provided by the IP.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

20

Bus Interface Unit (BIU)

Segment
Registers

Data Segment Register

16-bit

Points to the current data segment; operands for most
instructions are fetched from this segment.

The 16-bit contents of the Source Index (SI) or
Destination Index (DI) or a 16-bit displacement are used
as offset for computing the 20-bit physical address.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

21

Bus Interface Unit (BIU)

Segment
Registers

Stack Segment Register

16-bit

Points to the current stack.

The 20-bit physical stack address is calculated from the
Stack Segment (SS) and the Stack Pointer (SP) for stack
instructions such as PUSH and POP.

In based addressing mode, the 20-bit physical stack
address is calculated from the Stack segment (SS) and the
Base Pointer (BP).

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

22

Bus Interface Unit (BIU)

Segment
Registers

Extra Segment Register

16-bit

Points to the extra segment in which data (in excess of
64K pointed to by the DS) is stored.

String instructions use the ES and DI to determine the 20-
bit physical address for the destination.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

23

Bus Interface Unit (BIU)

Segment
Registers

Instruction Pointer

16-bit

Always points to the next instruction to be executed within
the currently executing code segment.

So, this register contains the 16-bit offset address pointing
to the next instruction code within the 64Kb of the code
segment area.

Its content is automatically incremented as the execution
of the next instruction takes place.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

24

Bus Interface Unit (BIU)

A group of First-In-First-
Out (FIFO) in which up to
6 bytes of instruction
code are pre fetched
from the memory ahead
of time.

This is done in order to
speed up the execution
by overlapping
instruction fetch with
execution.

This mechanism is known
as pipelining.

Instruction queue

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

25

Some of the 16 bit registers can be
used as two 8 bit registers as :

AX can be used as AH and AL
BX can be used as BH and BL
CX can be used as CH and CL
DX can be used as DH and DL

Execution Unit (EU)

EU decodes and
executes instructions.

A decoder in the EU

control system
translates instructions.

16-bit ALU for
performing arithmetic
and logic operation

Four general purpose
registers(AX, BX, CX, DX);

Pointer registers (Stack
Pointer, Base Pointer);

and

Index registers (Source
Index, Destination Index)
each of 16-bits

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

26

EU
Registers

Accumulator Register (AX)

Consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX.

AL in this case contains the low order byte of the word,
and AH contains the high-order byte.

The I/O instructions use the AX or AL for inputting /
outputting 16 or 8 bit data to or from an I/O port.

Multiplication and Division instructions also use the AX or
AL.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

27

EU
Registers

Base Register (BX)

Consists of two 8-bit registers BL and BH, which can be
combined together and used as a 16-bit register BX.

BL in this case contains the low-order byte of the word,
and BH contains the high-order byte.

This is the only general purpose register whose contents
can be used for addressing the 8086 memory.

All memory references utilizing this register content for
addressing use DS as the default segment register.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

28

EU
Registers

Counter Register (CX)

Consists of two 8-bit registers CL and CH, which can be
combined together and used as a 16-bit register CX.

When combined, CL register contains the low order byte of
the word, and CH contains the high-order byte.

Instructions such as SHIFT, ROTATE and LOOP use the
contents of CX as a counter.

Execution Unit (EU)

Example:

The instruction LOOP START automatically decrements
CX by 1 without affecting flags and will check if [CX] =
0.

If it is zero, 8086 executes the next instruction;
otherwise the 8086 branches to the label START.

Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

29

EU
Registers

Data Register (DX)

Consists of two 8-bit registers DL and DH, which can be
combined together and used as a 16-bit register DX.

When combined, DL register contains the low order byte of
the word, and DH contains the high-order byte.

Used to hold the high 16-bit result (data) in 16 X 16
multiplication or the high 16-bit dividend (data) before a
32 ÷ 16 division and the 16-bit reminder after division.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

30

EU
Registers

Stack Pointer (SP) and Base Pointer (BP)

SP and BP are used to access data in the stack segment.

SP is used as an offset from the current SS during
execution of instructions that involve the stack segment in
the external memory.

SP contents are automatically updated (incremented/
decremented) due to execution of a POP or PUSH
instruction.

BP contains an offset address in the current SS, which is
used by instructions utilizing the based addressing mode.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

31

EU
Registers

Source Index (SI) and Destination Index (DI)

Used in indexed addressing.

Instructions that process data strings use the SI and DI
registers together with DS and ES respectively in order to
distinguish between the source and destination addresses.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

32

EU
Registers

Source Index (SI) and Destination Index (DI)

Used in indexed addressing.

Instructions that process data strings use the SI and DI
registers together with DS and ES respectively in order to
distinguish between the source and destination addresses.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

Architecture

33

Flag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF

DF

IF

TF

SF

ZF

AF

PF

CF

Carry Flag

This flag is set, when there is
a carry out of MSB in case of
addition or a borrow in case
of subtraction.

Parity Flag

This flag is set to 1, if the lower
byte of the result contains even
number of 1’s ; for odd number
of 1’s set to zero.

Auxiliary Carry Flag

This is set, if there is a carry from the
lowest nibble, i.e, bit three during
addition, or borrow for the lowest
nibble, i.e, bit three, during
subtraction.

Zero Flag

This flag is set, if the result of
the computation or comparison
performed by an instruction is
zero

Sign Flag

This flag is set, when the
result of any computation

is negative

Tarp Flag
If this flag is set, the processor
enters the single step execution
mode by generating internal
interrupts after the execution of
each instruction

Interrupt Flag

Causes the 8086 to recognize
external mask interrupts; clearing IF

disables these interrupts.

Direction Flag
This is used by string manipulation instructions. If this flag bit
is ‘0’, the string is processed beginning from the lowest
address to the highest address, i.e., auto incrementing mode.
Otherwise, the string is processed from the highest address
towards the lowest address, i.e., auto incrementing mode.

Over flow Flag
This flag is set, if an overflow occurs, i.e, if the result of a signed

operation is large enough to accommodate in a destination
register. The result is of more than 7-bits in size in case of 8-bit
signed operation and more than 15-bits in size in case of 16-bit

sign operations, then the overflow will be set.

Execution Unit (EU) Microprocessor
 Royida A. Ibrahem

Alhayali

34

Architecture

Sl.No. Type Register width Name of register

1 General purpose register 16 bit AX, BX, CX, DX

8 bit AL, AH, BL, BH, CL, CH, DL, DH

2 Pointer register 16 bit SP, BP

3 Index register 16 bit SI, DI

4 Instruction Pointer 16 bit IP

5 Segment register 16 bit CS, DS, SS, ES

6 Flag (PSW) 16 bit Flag register

8086 registers
categorized

into 4 groups

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF

DF

IF

TF

SF

ZF

AF

PF

CF

Microprocessor
 Royida A. Ibrahem

Alhayali

35

Architecture

Register Name of the Register Special Function

AX 16-bit Accumulator Stores the 16-bit results of arithmetic and logic
operations

AL 8-bit Accumulator

Stores the 8-bit results of arithmetic and logic
operations

BX Base register Used to hold base value in base addressing mode
to access memory data

CX Count Register Used to hold the count value in SHIFT, ROTATE
and LOOP instructions

DX Data Register Used to hold data for multiplication and division
operations

SP Stack Pointer Used to hold the offset address of top stack
memory

BP Base Pointer Used to hold the base value in base addressing
using SS register to access data from stack
memory

SI Source Index Used to hold index value of source operand (data)
for string instructions

DI Data Index Used to hold the index value of destination
operand (data) for string operations

Registers and Special Functions Microprocessor
 Royida A. Ibrahem

Alhayali

Introduction

36

Program
A set of instructions written to solve

a problem.

Instruction
Directions which a microprocessor

follows to execute a task or part of a
task.

Computer language

High Level Low Level

Machine Language Assembly Language

 Binary bits
 English Alphabets
 ‘Mnemonics’
 Assembler

Mnemonics Machine
Language

Microprocessor
 Royida A. Ibrahem

Alhayali

37

Introduction

 Program is a set of instructions written to solve a problem.
Instructions are the directions which a microprocessor follows to
execute a task or part of a task. Broadly, computer language
can be divided into two parts as high-level language and low level
language. Low level language are machine specific. Low level
language can be further divided into machine language and
assembly language.

 Machine language is the only language which a machine can
understand. Instructions in this language are written in binary bits as
a specific bit pattern. The computer interprets this bit pattern as an
instruction to perform a particular task. The entire program is a
sequence of binary numbers. This is a machine-friendly language
but not user friendly. Debugging is another problem associated with
machine language.

 To overcome these problems, programmers develop another way in
which instructions are written in English alphabets. This new
language is known as Assembly language. The instructions in this
language are termed mnemonics. As microprocessor can only
understand the machine language so mnemonics are translated into
machine language either manually or by a program known as
assembler.

 Efficient software development for the microprocessor requires a

complete familiarity with the instruction set, their format and
addressing modes. Here in this chapter, we will focus on the
addressing modes and instructions formats of microprocessor 8086.

Microprocessor
 Royida A. Ibrahem

Alhayali

Group I : Addressing modes for
register and immediate data

Group IV : Relative Addressing mode

Group V : Implied Addressing mode

Group III : Addressing modes for
I/O ports

Group II : Addressing modes for
memory data

Addressing Modes

38

Every instruction of a program has to operate on a data.
The different ways in which a source operand is denoted
in an instruction are known as addressing modes.

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

39

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

The instruction will specify the name of the
register which holds the data to be operated by
the instruction.

Example:

MOV CL, DH

The content of 8-bit register DH is moved to
another 8-bit register CL

(CL) (DH)

Group I : Addressing modes for
register and immediate data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

40

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In immediate addressing mode, an 8-bit or 16-bit
data is specified as part of the instruction

Example:

MOV DL, 08H

The 8-bit data (08H) given in the instruction is
moved to DL

(DL) 08H

MOV AX, 0A9FH

The 16-bit data (0A9FH) given in the instruction is
moved to AX register

(AX) 0A9FH

Group I : Addressing modes for
register and immediate data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes : Memory Access

41

Physical Address (20 Bits)

Adder

Segment Register (16 bits) 0 0 0 0

Offset Value (16 bits)

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes : Memory Access

42

20 Address lines 8086 can address up to
220 = 1M bytes of memory

However, the largest register is only 16 bits

Physical Address will have to be calculated
Physical Address : Actual address of a byte in
memory. i.e. the value which goes out onto the
address bus.

Memory Address represented in the form –
Seg : Offset (Eg - 89AB:F012)

Each time the processor wants to access
memory, it takes the contents of a segment
register, shifts it one hexadecimal place to the
left (same as multiplying by 1610), then add the
required offset to form the 20- bit address

89AB : F012 89AB 89AB0 (Paragraph to byte 89AB x 10 = 89AB0)
 F012 0F012 (Offset is already in byte unit)
 + -------
 98AC2 (The absolute address)

16 bytes of
contiguous memory

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes : Memory Access

43

To access memory we use these four registers: BX,
SI, DI, BP

Combining these registers inside [] symbols, we
can get different memory locations (Effective
Address, EA)

Supported combinations:

[BX + SI]
[BX + DI]
[BP + SI]
[BP + DI]

[SI]
[DI]
d16 (variable offset only)
[BX]

[BX + SI + d8]
[BX + DI + d8]
[BP + SI + d8]
[BP + DI + d8]

[SI + d8]
[DI + d8]
[BP + d8]
[BX + d8]

[BX + SI + d16]
[BX + DI + d16]
[BP + SI + d16]
[BP + DI + d16]

[SI + d16]
[DI + d16]
[BP + d16]
[BX + d16]

BX

BP

SI

DI

+ disp

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

44

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Here, the effective address of the memory
location at which the data operand is stored is
given in the instruction.

The effective address is just a 16-bit number
written directly in the instruction.

Example:

MOV BX, [1354H]
MOV BL, [0400H]

The square brackets around the 1354H denotes
the contents of the memory location. When
executed, this instruction will copy the contents of
the memory location into BX register.

This addressing mode is called direct because the
displacement of the operand from the segment
base is specified directly in the instruction.

Group II : Addressing modes
for memory data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

45

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Register indirect addressing, name of the
register which holds the effective address (EA)
will be specified in the instruction.

Registers used to hold EA are any of the following
registers:

BX, BP, DI and SI.

Content of the DS register is used for base
address calculation.

Example:

MOV CX, [BX]

 Operations:

EA = (BX)
BA = (DS) x 1610
MA = BA + EA

(CX) (MA) or,

(CL) (MA)
(CH) (MA +1)

Group II : Addressing modes
for memory data

Note : Register/ memory
enclosed in brackets refer
to content of register/
memory

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

46

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Based Addressing, BX or BP is used to hold the
base value for effective address and a signed 8-bit
or unsigned 16-bit displacement will be specified
in the instruction.

In case of 8-bit displacement, it is sign extended
to 16-bit before adding to the base value.

When BX holds the base value of EA, 20-bit
physical address is calculated from BX and DS.

When BP holds the base value of EA, BP and SS is
used.

Example:

MOV AX, [BX + 08H]

 Operations:

0008H 08H (Sign extended)
EA = (BX) + 0008H
BA = (DS) x 1610
MA = BA + EA

(AX) (MA) or,

(AL) (MA)
(AH) (MA + 1)

Group II : Addressing modes
for memory data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

47

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

SI or DI register is used to hold an index value for
memory data and a signed 8-bit or unsigned 16-
bit displacement will be specified in the
instruction.

Displacement is added to the index value in SI or
DI register to obtain the EA.

In case of 8-bit displacement, it is sign extended
to 16-bit before adding to the base value.

Example:

MOV CX, [SI + 0A2H]

Operations:

FFA2H A2H (Sign extended)

EA = (SI) + FFA2H
BA = (DS) x 1610
MA = BA + EA

(CX) (MA) or,

(CL) (MA)
(CH) (MA + 1)

Group II : Addressing modes
for memory data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

48

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Based Index Addressing, the effective address
is computed from the sum of a base register (BX
or BP), an index register (SI or DI) and a
displacement.

Example:

MOV DX, [BX + SI + 0AH]

Operations:

000AH 0AH (Sign extended)

EA = (BX) + (SI) + 000AH

BA = (DS) x 1610
MA = BA + EA

(DX) (MA) or,

(DL) (MA)
(DH) (MA + 1)

Group II : Addressing modes
for memory data

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

49

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Employed in string operations to operate on string
data.

The effective address (EA) of source data is stored
in SI register and the EA of destination is stored in
DI register.

Segment register for calculating base address of
source data is DS and that of the destination data
is ES

Example: MOVS BYTE

Operations:

Calculation of source memory location:
EA = (SI) BA = (DS) x 1610 MA = BA + EA

Calculation of destination memory location:
EAE = (DI) BAE = (ES) x 1610 MAE = BAE + EAE

(MAE) (MA)

If DF = 1, then (SI) (SI) – 1 and (DI) = (DI) - 1
If DF = 0, then (SI) (SI) +1 and (DI) = (DI) + 1

Group II : Addressing modes
for memory data

Note : Effective address of
the Extra segment register

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

These addressing modes are used to access data
from standard I/O mapped devices or ports.

In direct port addressing mode, an 8-bit port
address is directly specified in the instruction.

Example: IN AL, [09H]

Operations: PORTaddr = 09H
 (AL) (PORT)

 Content of port with address 09H is
 moved to AL register

In indirect port addressing mode, the instruction
will specify the name of the register which holds
the port address. In 8086, the 16-bit port address
is stored in the DX register.

Example: OUT [DX], AX

Operations: PORTaddr = (DX)
 (PORT) (AX)

 Content of AX is moved to port
 whose address is specified by DX
 register.

50

Group III : Addressing
modes for I/O ports

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

51

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In this addressing mode, the effective address of
a program instruction is specified relative to
Instruction Pointer (IP) by an 8-bit signed
displacement.

Example: JZ 0AH

 Operations:

000AH 0AH (sign extend)

If ZF = 1, then

EA = (IP) + 000AH
BA = (CS) x 1610
MA = BA + EA

If ZF = 1, then the program control jumps to
new address calculated above.

If ZF = 0, then next instruction of the
program is executed.

Group IV : Relative
Addressing mode

Microprocessor
 Royida A. Ibrahem

Alhayali

Addressing Modes

52

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Instructions using this mode have no operands.
The instruction itself will specify the data to be
operated by the instruction.

Example: CLC

This clears the carry flag to zero.

Group IV : Implied
Addressing mode

Microprocessor
 Royida A. Ibrahem

Alhayali

1. Data Transfer Instructions

2. Arithmetic Instructions

3. Logical Instructions

4. String manipulation Instructions

5. Process Control Instructions

6. Control Transfer Instructions

Instruction Set

53

8086 supports 6 types of instructions.

Microprocessor
 Royida A. Ibrahem

Alhayali

1. Data Transfer Instructions

Instruction Set

54

Instructions that are used to transfer data/ address in to
registers, memory locations and I/O ports.

Generally involve two operands: Source operand and

Destination operand of the same size.

Source: Register or a memory location or an immediate data
Destination : Register or a memory location.

The size should be a either a byte or a word.

A 8-bit data can only be moved to 8-bit register/ memory

and a 16-bit data can be moved to 16-bit register/ memory.

Microprocessor
 Royida A. Ibrahem

Alhayali

1. Data Transfer Instructions

Instruction Set

55

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …

MOV reg2/ mem, reg1/ mem

MOV reg2, reg1
MOV mem, reg1
MOV reg2, mem

(reg2) (reg1)
(mem) (reg1)
(reg2) (mem)

MOV reg/ mem, data

MOV reg, data
MOV mem, data

(reg) data
(mem) data

XCHG reg2/ mem, reg1

XCHG reg2, reg1
XCHG mem, reg1

(reg2) (reg1)
(mem) (reg1)

Microprocessor
 Royida A. Ibrahem

Alhayali

1. Data Transfer Instructions

Instruction Set

56

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …

PUSH reg16/ mem

PUSH reg16

PUSH mem

(SP) (SP) – 2
MA S = (SS) x 1610 + SP
(MA S ; MA S + 1) (reg16)

(SP) (SP) – 2
MA S = (SS) x 1610 + SP
(MA S ; MA S + 1) (mem)

POP reg16/ mem

POP reg16

POP mem

MA S = (SS) x 1610 + SP
(reg16) (MA S ; MA S + 1)
(SP) (SP) + 2

MA S = (SS) x 1610 + SP
(mem) (MA S ; MA S + 1)
(SP) (SP) + 2

Microprocessor
 Royida A. Ibrahem

Alhayali

1. Data Transfer Instructions

Instruction Set

57

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …

IN A, [DX]

IN AL, [DX]

IN AX, [DX]

PORTaddr = (DX)
(AL) (PORT)

PORTaddr = (DX)
(AX) (PORT)

IN A, addr8

IN AL, addr8

IN AX, addr8

(AL) (addr8)

(AX) (addr8)

OUT [DX], A

OUT [DX], AL

OUT [DX], AX

PORTaddr = (DX)
(PORT) (AL)

PORTaddr = (DX)
(PORT) (AX)

OUT addr8, A

OUT addr8, AL

OUT addr8, AX

(addr8) (AL)

(addr8) (AX)

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

58

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

ADD reg2/ mem, reg1/mem

ADC reg2, reg1
ADC reg2, mem
ADC mem, reg1

(reg2) (reg1) + (reg2)
(reg2) (reg2) + (mem)
(mem) (mem)+(reg1)

ADD reg/mem, data

ADD reg, data
ADD mem, data

(reg) (reg)+ data
(mem) (mem)+data

ADD A, data

ADD AL, data8
ADD AX, data16

(AL) (AL) + data8
(AX) (AX) +data16

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

59

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

ADC reg2/ mem, reg1/mem

ADC reg2, reg1
ADC reg2, mem
ADC mem, reg1

(reg2) (reg1) + (reg2)+CF
(reg2) (reg2) + (mem)+CF
(mem) (mem)+(reg1)+CF

ADC reg/mem, data

ADC reg, data
ADC mem, data

(reg) (reg)+ data+CF
(mem) (mem)+data+CF

ADDC A, data

ADD AL, data8
ADD AX, data16

(AL) (AL) + data8+CF
(AX) (AX) +data16+CF

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

60

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

SUB reg2/ mem, reg1/mem

SUB reg2, reg1
SUB reg2, mem
SUB mem, reg1

(reg2) (reg1) - (reg2)
(reg2) (reg2) - (mem)
(mem) (mem) - (reg1)

SUB reg/mem, data

SUB reg, data
SUB mem, data

(reg) (reg) - data
(mem) (mem) - data

SUB A, data

SUB AL, data8
SUB AX, data16

(AL) (AL) - data8
(AX) (AX) - data16

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

61

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

SBB reg2/ mem, reg1/mem

SBB reg2, reg1
SBB reg2, mem
SBB mem, reg1

(reg2) (reg1) - (reg2) - CF
(reg2) (reg2) - (mem)- CF
(mem) (mem) - (reg1) –CF

SBB reg/mem, data

SBB reg, data
SBB mem, data

(reg) (reg) – data - CF
(mem) (mem) - data - CF

SBB A, data

SBB AL, data8
SBB AX, data16

(AL) (AL) - data8 - CF
(AX) (AX) - data16 - CF

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

62

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

INC reg/ mem

INC reg8

INC reg16

INC mem

(reg8) (reg8) + 1

(reg16) (reg16) + 1

(mem) (mem) + 1

DEC reg/ mem

DEC reg8

DEC reg16

DEC mem

(reg8) (reg8) - 1

(reg16) (reg16) - 1

(mem) (mem) - 1

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

63

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

MUL reg/ mem

MUL reg

MUL mem

For byte : (AX) (AL) x (reg8)
For word : (DX)(AX) (AX) x (reg16)

For byte : (AX) (AL) x (mem8)
For word : (DX)(AX) (AX) x (mem16)

IMUL reg/ mem

IMUL reg

IMUL mem

For byte : (AX) (AL) x (reg8)
For word : (DX)(AX) (AX) x (reg16)

For byte : (AX) (AX) x (mem8)
For word : (DX)(AX) (AX) x (mem16)

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

64

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

DIV reg/ mem

DIV reg

DIV mem

For 16-bit :- 8-bit :
(AL) (AX) :- (reg8) Quotient
(AH) (AX) MOD(reg8) Remainder

For 32-bit :- 16-bit :
(AX) (DX)(AX) :- (reg16) Quotient
(DX) (DX)(AX) MOD(reg16) Remainder

For 16-bit :- 8-bit :
(AL) (AX) :- (mem8) Quotient
(AH) (AX) MOD(mem8) Remainder

For 32-bit :- 16-bit :
(AX) (DX)(AX) :- (mem16) Quotient
(DX) (DX)(AX) MOD(mem16) Remainder

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

65

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

IDIV reg/ mem

IDIV reg

IDIV mem

For 16-bit :- 8-bit :
(AL) (AX) :- (reg8) Quotient
(AH) (AX) MOD(reg8) Remainder

For 32-bit :- 16-bit :
(AX) (DX)(AX) :- (reg16) Quotient
(DX) (DX)(AX) MOD(reg16) Remainder

For 16-bit :- 8-bit :
(AL) (AX) :- (mem8) Quotient
(AH) (AX) MOD(mem8) Remainder

For 32-bit :- 16-bit :
(AX) (DX)(AX) :- (mem16) Quotient
(DX) (DX)(AX) MOD(mem16) Remainder

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

66

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

CMP reg2/mem, reg1/ mem

CMP reg2, reg1

CMP reg2, mem

CMP mem, reg1

Modify flags (reg2) – (reg1)

If (reg2) > (reg1) then CF=0, ZF=0, SF=0
If (reg2) < (reg1) then CF=1, ZF=0, SF=1
If (reg2) = (reg1) then CF=0, ZF=1, SF=0

Modify flags (reg2) – (mem)

If (reg2) > (mem) then CF=0, ZF=0, SF=0
If (reg2) < (mem) then CF=1, ZF=0, SF=1
If (reg2) = (mem) then CF=0, ZF=1, SF=0

Modify flags (mem) – (reg1)

If (mem) > (reg1) then CF=0, ZF=0, SF=0
If (mem) < (reg1) then CF=1, ZF=0, SF=1
If (mem) = (reg1) then CF=0, ZF=1, SF=0

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

67

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

CMP reg/mem, data

CMP reg, data

CMP mem, data

Modify flags (reg) – (data)

If (reg) > data then CF=0, ZF=0, SF=0
If (reg) < data then CF=1, ZF=0, SF=1
If (reg) = data then CF=0, ZF=1, SF=0

Modify flags (mem) – (mem)

If (mem) > data then CF=0, ZF=0, SF=0
If (mem) < data then CF=1, ZF=0, SF=1
If (mem) = data then CF=0, ZF=1, SF=0

Microprocessor
 Royida A. Ibrahem

Alhayali

2. Arithmetic Instructions

Instruction Set

68

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

CMP A, data

CMP AL, data8

CMP AX, data16

Modify flags (AL) – data8

If (AL) > data8 then CF=0, ZF=0, SF=0
If (AL) < data8 then CF=1, ZF=0, SF=1
If (AL) = data8 then CF=0, ZF=1, SF=0

Modify flags (AX) – data16

If (AX) > data16 then CF=0, ZF=0, SF=0
If (mem) < data16 then CF=1, ZF=0, SF=1
If (mem) = data16 then CF=0, ZF=1, SF=0

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

69

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

70

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

71

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

72

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

73

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

74

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

75

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

3. Logical Instructions

Instruction Set

76

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

77

 String : Sequence of bytes or words

 8086 instruction set includes instruction for string movement, comparison,
scan, load and store.

 REP instruction prefix : used to repeat execution of string instructions

 String instructions end with S or SB or SW.
S represents string, SB string byte and SW string word.

 Offset or effective address of the source operand is stored in SI register and
that of the destination operand is stored in DI register.

 Depending on the status of DF, SI and DI registers are automatically
updated.

 DF = 0 SI and DI are incremented by 1 for byte and 2 for word.

 DF = 1 SI and DI are decremented by 1 for byte and 2 for word.

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

78

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

REP

REPZ/ REPE

(Repeat CMPS or SCAS until
ZF = 0)

REPNZ/ REPNE

(Repeat CMPS or SCAS until
ZF = 1)

While CX 0 and ZF = 1, repeat execution of
string instruction and
(CX) (CX) – 1

While CX 0 and ZF = 0, repeat execution of
string instruction and
(CX) (CX) - 1

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

79

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

MOVS

MOVSB

MOVSW

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

(MAE) (MA)

If DF = 0, then (DI) (DI) + 1; (SI) (SI) + 1
If DF = 1, then (DI) (DI) - 1; (SI) (SI) - 1

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

(MAE ; MAE + 1) (MA; MA + 1)

If DF = 0, then (DI) (DI) + 2; (SI) (SI) + 2
If DF = 1, then (DI) (DI) - 2; (SI) (SI) - 2

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

80

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

CMPS

CMPSB

CMPSW

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

Modify flags (MA) - (MAE)

If (MA) > (MAE), then CF = 0; ZF = 0; SF = 0
If (MA) < (MAE), then CF = 1; ZF = 0; SF = 1
If (MA) = (MAE), then CF = 0; ZF = 1; SF = 0

For byte operation
If DF = 0, then (DI) (DI) + 1; (SI) (SI) + 1
If DF = 1, then (DI) (DI) - 1; (SI) (SI) - 1

For word operation
If DF = 0, then (DI) (DI) + 2; (SI) (SI) + 2
If DF = 1, then (DI) (DI) - 2; (SI) (SI) - 2

Compare two string byte or string word

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

81

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

SCAS

SCASB

SCASW

MAE = (ES) x 1610 + (DI)
Modify flags (AL) - (MAE)

If (AL) > (MAE), then CF = 0; ZF = 0; SF = 0
If (AL) < (MAE), then CF = 1; ZF = 0; SF = 1
If (AL) = (MAE), then CF = 0; ZF = 1; SF = 0

If DF = 0, then (DI) (DI) + 1
If DF = 1, then (DI) (DI) – 1

MAE = (ES) x 1610 + (DI)
Modify flags (AL) - (MAE)

If (AX) > (MAE ; MAE + 1), then CF = 0; ZF = 0; SF = 0
If (AX) < (MAE ; MAE + 1), then CF = 1; ZF = 0; SF = 1
If (AX) = (MAE ; MAE + 1), then CF = 0; ZF = 1; SF = 0

If DF = 0, then (DI) (DI) + 2
If DF = 1, then (DI) (DI) – 2

Scan (compare) a string byte or word with accumulator

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

82

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

LODS

LODSB

LODSW

MA = (DS) x 1610 + (SI)
(AL) (MA)

If DF = 0, then (SI) (SI) + 1
If DF = 1, then (SI) (SI) – 1

MA = (DS) x 1610 + (SI)
(AX) (MA ; MA + 1)

If DF = 0, then (SI) (SI) + 2
If DF = 1, then (SI) (SI) – 2

Load string byte in to AL or string word in to AX

Microprocessor
 Royida A. Ibrahem

Alhayali

4. String Manipulation Instructions

Instruction Set

83

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

STOS

STOSB

STOSW

MAE = (ES) x 1610 + (DI)
(MAE) (AL)

If DF = 0, then (DI) (DI) + 1
If DF = 1, then (DI) (DI) – 1

MAE = (ES) x 1610 + (DI)
(MAE ; MAE + 1) (AX)

If DF = 0, then (DI) (DI) + 2
If DF = 1, then (DI) (DI) – 2

Store byte from AL or word from AX in to string

Microprocessor
 Royida A. Ibrahem

Alhayali

Mnemonics Explanation

STC Set CF 1

CLC Clear CF 0

CMC Complement carry CF CF/

STD Set direction flag DF 1

CLD Clear direction flag DF 0

STI Set interrupt enable flag IF 1

CLI Clear interrupt enable flag IF 0

NOP No operation

HLT Halt after interrupt is set

WAIT Wait for TEST pin active

ESC opcode mem/ reg Used to pass instruction to a coprocessor
which shares the address and data bus
with the 8086

LOCK Lock bus during next instruction

5. Processor Control Instructions

Instruction Set

84

Microprocessor
 Royida A. Ibrahem

Alhayali

6. Control Transfer Instructions

Instruction Set

85

Transfer the control to a specific destination or target instruction
Do not affect flags

Mnemonics Explanation

CALL reg/ mem/ disp16 Call subroutine

RET Return from subroutine

JMP reg/ mem/ disp8/ disp16 Unconditional jump

 8086 Unconditional transfers

Microprocessor
 Royida A. Ibrahem

Alhayali

6. Control Transfer Instructions

Instruction Set

86

 8086 signed conditional
branch instructions

 8086 unsigned conditional
branch instructions

Checks flags

If conditions are true, the program control is
transferred to the new memory location in the same
segment by modifying the content of IP

Microprocessor
 Royida A. Ibrahem

Alhayali

6. Control Transfer Instructions

Instruction Set

87

Name Alternate name

JE disp8
Jump if equal

JZ disp8
Jump if result is 0

JNE disp8
Jump if not equal

JNZ disp8
Jump if not zero

JG disp8
Jump if greater

JNLE disp8
Jump if not less or
equal

JGE disp8
Jump if greater
than or equal

JNL disp8
Jump if not less

JL disp8
Jump if less than

JNGE disp8
Jump if not
greater than or
equal

JLE disp8
Jump if less than
or equal

JNG disp8
Jump if not
greater

 8086 signed conditional
branch instructions

 8086 unsigned conditional
branch instructions

Name Alternate name

JE disp8
Jump if equal

JZ disp8
Jump if result is 0

JNE disp8
Jump if not equal

JNZ disp8
Jump if not zero

JA disp8
Jump if above

JNBE disp8
Jump if not below
or equal

JAE disp8
Jump if above or
equal

JNB disp8
Jump if not below

JB disp8
Jump if below

JNAE disp8
Jump if not above
or equal

JBE disp8
Jump if below or
equal

JNA disp8
Jump if not above

Microprocessor
 Royida A. Ibrahem

Alhayali

6. Control Transfer Instructions

Instruction Set

88

Mnemonics Explanation

JC disp8 Jump if CF = 1

JNC disp8 Jump if CF = 0

JP disp8 Jump if PF = 1

JNP disp8 Jump if PF = 0

JO disp8 Jump if OF = 1

JNO disp8 Jump if OF = 0

JS disp8 Jump if SF = 1

JNS disp8 Jump if SF = 0

JZ disp8 Jump if result is zero, i.e, Z = 1

JNZ disp8 Jump if result is not zero, i.e, Z = 1

 8086 conditional branch instructions affecting individual flags

Microprocessor
 Royida A. Ibrahem

Alhayali

Assembler directives

Assemble Directives

90

Instructions to the Assembler regarding the program being
executed.

Control the generation of machine codes and organization of
the program; but no machine codes are generated for
assembler directives.

Also called ‘pseudo instructions’

Used to :

 › specify the start and end of a program
 › attach value to variables
 › allocate storage locations to input/ output data
 › define start and end of segments, procedures, macros etc..

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

91

Define Byte

Define a byte type (8-bit) variable

Reserves specific amount of memory
locations to each variable

Range : 00H – FFH for unsigned value;
 00H – 7FH for positive value and
 80H – FFH for negative value

General form : variable DB value/ values

Example:

LIST DB 7FH, 42H, 35H

Three consecutive memory locations are reserved for
the variable LIST and each data specified in the
instruction are stored as initial value in the reserved
memory location

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
FAR
NEAR
ENDP

SHORT

MACRO
ENDM

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

92

Define Word

Define a word type (16-bit) variable

Reserves two consecutive memory locations
to each variable

Range : 0000H – FFFFH for unsigned value;
 0000H – 7FFFH for positive value and
 8000H – FFFFH for negative value

General form : variable DW value/ values

Example:

ALIST DW 6512H, 0F251H, 0CDE2H

Six consecutive memory locations are reserved for
the variable ALIST and each 16-bit data specified in
the instruction is stored in two consecutive memory
location.

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
FAR
NEAR
ENDP

SHORT

MACRO
ENDM

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

93

SEGMENT : Used to indicate the beginning of
a code/ data/ stack segment

ENDS : Used to indicate the end of a code/
data/ stack segment

General form:

Segnam SEGMENT

 …
 …
 …
 …
 …
 …

Segnam ENDS

Program code
or
Data Defining Statements

User defined name of
the segment

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
FAR
NEAR
ENDP

SHORT

MACRO
ENDM

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

94

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
FAR
NEAR
ENDP

SHORT

MACRO
ENDM

Informs the assembler the name of the
program/ data segment that should be used
for a specific segment.

General form:

Segment Register

ASSUME segreg : segnam, .. , segreg : segnam

User defined name of
the segment

ASSUME CS: ACODE, DS:ADATA

Tells the compiler that the
instructions of the program are
stored in the segment ACODE and
data are stored in the segment
ADATA

Example:

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

95

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
FAR
NEAR
ENDP

SHORT

MACRO
ENDM

ORG (Origin) is used to assign the starting address
(Effective address) for a program/ data segment

END is used to terminate a program; statements
after END will be ignored

EVEN : Informs the assembler to store program/
data segment starting from an even address

EQU (Equate) is used to attach a value to a variable

ORG 1000H Informs the assembler that the statements
following ORG 1000H should be stored in
memory starting with effective address
1000H

LOOP EQU 10FEH

Value of variable LOOP is 10FEH

_SDATA SEGMENT
 ORG 1200H
 A DB 4CH
 EVEN
 B DW 1052H
_SDATA ENDS

In this data segment, effective address of
memory location assigned to A will be 1200H
and that of B will be 1202H and 1203H.

Examples:

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

96

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
ENDP
FAR
NEAR

SHORT

MACRO
ENDM

PROC Indicates the beginning of a procedure

ENDP End of procedure

FAR Intersegment call

NEAR Intrasegment call

General form

procname PROC[NEAR/ FAR]

 …
 …
 …

 RET

procname ENDP

Program statements of the
procedure

Last statement of the
procedure

User defined name of
the procedure

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

97

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
ENDP
FAR
NEAR

SHORT

MACRO
ENDM

ADD64 PROC NEAR

 …
 …
 …

 RET
ADD64 ENDP

The subroutine/ procedure named ADD64 is
declared as NEAR and so the assembler will
code the CALL and RET instructions involved
in this procedure as near call and return

CONVERT PROC FAR

 …
 …
 …

 RET
CONVERT ENDP

The subroutine/ procedure named CONVERT
is declared as FAR and so the assembler will
code the CALL and RET instructions involved
in this procedure as far call and return

Examples:

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

98

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
ENDP
FAR
NEAR

SHORT

MACRO
ENDM

Reserves one memory location for 8-bit
signed displacement in jump instructions

JMP SHORT
AHEAD

The directive will reserve one
memory location for 8-bit
displacement named AHEAD

Example:

Microprocessor
 Royida A. Ibrahem

Alhayali

Assemble Directives

99

DB

DW

SEGMENT
ENDS

ASSUME

ORG
END
EVEN
EQU

PROC
ENDP
FAR
NEAR

SHORT

MACRO
ENDM

MACRO Indicate the beginning of a macro

ENDM End of a macro

General form:

macroname MACRO[Arg1, Arg2 ...]

 …
 …
 …

macroname ENDM

Program
statements in
the macro

User defined name of
the macro

Microprocessor
 Royida A. Ibrahem

Alhayali

100

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing memory and i/o ports

Microprocessor
 Royida A. Ibrahem

Alhayali

Memory

102

Memory

Processor Memory

Primary or Main Memory

Secondary Memory

Store
Programs
and Data

 Registers inside a microcomputer
 Store data and results temporarily
 No speed disparity
 Cost

 Storage area which can be directly
accessed by microprocessor

 Store programs and data prior to
execution

 Should not have speed disparity with
processor Semi Conductor
memories using CMOS technology

 ROM, EPROM, Static RAM, DRAM

 Storage media comprising of slow
devices such as magnetic tapes and
disks

 Hold large data files and programs:
Operating system, compilers,
databases, permanent programs etc.

Microprocessor
 Royida A. Ibrahem

Alhayali

Memory organization in 8086

103

Memory IC’s : Byte oriented

8086 : 16-bit

Word : Stored by two
consecutive memory locations;
for LSB and MSB

Address of word : Address of
LSB

Bank 0 : A0 = 0 Even
addressed memory bank

 Bank 1 : 𝑩𝑯𝑬 = 0 Odd
 addressed memory bank

Microprocessor
 Royida A. Ibrahem

Alhayali

Memory organization in 8086

104

Operation 𝑩𝑯𝑬 A0 Data Lines Used

1 Read/ Write byte at an even address 1 0 D7 – D0

2 Read/ Write byte at an odd address

0 1 D15 – D8

3 Read/ Write word at an even address

0 0 D15 – D0

4 Read/ Write word at an odd address

0 1 D15 – D0 in first operation
byte from odd bank is
transferred

1 0 D7 – D0 in first operation
byte from odd bank is
transferred

Microprocessor
 Royida A. Ibrahem

Alhayali

Memory organization in 8086

105

Available memory space = EPROM + RAM

Allot equal address space in odd and even
bank for both EPROM and RAM

Can be implemented in two IC’s (one for
even and other for odd) or in multiple IC’s

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing SRAM and EPROM

106

Memory interface Read from and write in
to a set of semiconductor memory IC chip

EPROM Read operations

RAM Read and Write

In order to perform read/ write operations,

Memory access time read / write time of
the processor

Chip Select (CS) signal has to be generated

Control signals for read / write operations

Allot address for each memory location

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing SRAM and EPROM

107

Typical Semiconductor IC Chip

No of
Address

pins

Memory capacity Range of
address in

hexa
In Decimal In kilo In hexa

20 220= 10,48,576 1024 k = 1M 100000 00000
to

FFFFF

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing SRAM and EPROM

108

Memory map of 8086

RAM are mapped at the beginning; 00000H is allotted to RAM

EPROM’s are mapped at FFFFFH

 Facilitate automatic execution of monitor programs
 and creation of interrupt vector table

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing SRAM and EPROM

109

Monitor Programs

 Programing 8279 for keyboard scanning and display
 refreshing

 Programming peripheral IC’s 8259, 8257, 8255,
 8251, 8254 etc

 Initialization of stack

 Display a message on display (output)

 Initializing interrupt vector table

8279 Programmable keyboard/ display controller

8257 DMA controller

8259 Programmable interrupt controller

8255 Programmable peripheral interface

Note :

Microprocessor
 Royida A. Ibrahem

Alhayali

Interfacing I/O and peripheral devices

110

I/O devices

 For communication between microprocessor and
 outside world

 Keyboards, CRT displays, Printers, Compact Discs
 etc.

 Data transfer types

Microprocessor I/ O devices
Ports / Buffer IC’s

(interface circuitry)

Programmed I/ O
 Data transfer is accomplished
 through an I/O port
 controlled by software

Interrupt driven I/ O

I/O device interrupts the
processor and initiate data
transfer

Direct memory access
Data transfer is achieved by
bypassing the microprocessor

Memory mapped

I/O mapped

Microprocessor
 Royida A. Ibrahem

Alhayali

8086 and 8088 comparison

111

Memory mapping I/O mapping

20 bit address are provided for I/O
devices

8-bit or 16-bit addresses are
provided for I/O devices

The I/O ports or peripherals can be
treated like memory locations and
so all instructions related to
memory can be used for data
transmission between I/O device
and processor

Only IN and OUT instructions can be
used for data transfer between I/O
device and processor

Data can be moved from any
register to ports and vice versa

Data transfer takes place only
between accumulator and ports

When memory mapping is used for
I/O devices, full memory address
space cannot be used for
addressing memory.

 Useful only for small systems
where memory requirement is less

Full memory space can be used for
addressing memory.

 Suitable for systems which
require large memory capacity

For accessing the memory mapped
devices, the processor executes
memory read or write cycle.

 M / 𝐈𝐎 is asserted high

For accessing the I/O mapped
devices, the processor executes I/O
read or write cycle.

 M / 𝐈𝐎 is asserted low

Microprocessor
 Royida A. Ibrahem

Alhayali

8086 and 8088 comparison

8086 and 8088 comparison

113

8086 8088

Similar EU and Instruction set ; dissimilar BIU

16-bit Data bus lines obtained by
demultiplexing AD0 – AD15

8-bit Data bus lines obtained by
demultiplexing AD0 – AD7

20-bit address bus

8-bit address bus

Two banks of memory each of 512
kb

Single memory bank

6-bit instruction queue

4-bit instruction queue

Clock speeds: 5 / 8 / 10 MHz

5 / 8 MHz

In MIN mode, pin 28 is assigned the
signal M / 𝐈𝐎

In MIN mode, pin 28 is assigned the
signal IO / 𝐌

To access higher byte, 𝐁𝐇𝐄 signal is
used

No such signal required, since the
data width is only 1-byte

Microprocessor
 Royida A. Ibrahem

Alhayali

8087 Coprocessor

Co-processor – Intel 8087

115

Multiprocessor
system

A microprocessor system comprising of two or more
processors

Distributed processing: Entire task is divided in to
subtasks

Advantages Better system throughput by having more than one
processor

Each processor have a local bus to access local
memory or I/O devices so that a greater degree of
parallel processing can be achieved

System structure is more flexible.
One can easily add or remove modules to change the
system configuration without affecting the other
modules in the system

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

116

Specially designed to take care of mathematical
calculations involving integer and floating point data

“Math coprocessor” or “Numeric Data Processor (NDP)”

Works in parallel with a 8086 in the maximum mode

8087
coprocessor

1) Can operate on data of the integer, decimal and real
types with lengths ranging from 2 to 10 bytes

2) Instruction set involves square root, exponential,
tangent etc. in addition to addition, subtraction,
multiplication and division.

3) High performance numeric data processor it can
multiply two 64-bit real numbers in about 27s and
calculate square root in about 36 s

4) Follows IEEE floating point standard

5) It is multi bus compatible

Features

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

117

16 multiplexed address / data pins
and 4 multiplexed address / status
pins

Hence it can have 16-bit external
data bus and 20-bit external address
bus like 8086

Processor clock, ready and reset
signals are applied as clock, ready
and reset signals for coprocessor

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

118

BUSY signal from 8087 is connected
to the 𝐓𝐄𝐒𝐓 input of 8086

If the 8086 needs the result of some
computation that the 8087 is doing
before it can execute the next
instruction in the program, a user can
tell 8086 with a WAIT instruction to
keep looking at its 𝐓𝐄𝐒𝐓 pin until it
finds the pin low

A low on the BUSY output indicates
that the 8087 has completed the
computation

BUSY

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

119

The request / grant signal from the
8087 is usually connected to the
request / grant (𝐑𝐐 / 𝐆𝐓𝟎 or 𝐑𝐐 / 𝐆𝐓𝟏)
pin of the 8086

𝐑𝐐 / 𝐆𝐓𝟎

The request / grant signal from the
8087 is usually connected to the
request / grant pin of the
independent processor such as 8089

𝐑𝐐 / 𝐆𝐓𝟏

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

120

The interrupt pin is connected to the
interrupt management logic.

The 8087 can interrupt the 8086
through this interrupt management
logic at the time error condition
exists

INT

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

121

𝐒𝟎 - 𝐒 𝟐

𝐒𝟐 𝐒𝟏 𝐒𝟎 Status

1 0 0 Unused

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive

QS0 – QS1

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode
from queue

1 0 Queue empty

1 1 Subsequent byte of
opcode from queue

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

122

8087
instructions
are inserted
in the 8086
program

8086 and 8087 reads
instruction bytes and
puts them in the
respective queues

NOP

8087 instructions have
11011 as the MSB of
their first code byte

8087 keeps track for ESC
instruction by monitoring
𝑺𝟐 - 𝑺𝟎 and AD0 – AD15 of
8086.

Also keeps track of QS0 –
QS1.

Q status 00; does nothing

Q status 01; 8087
compares the five MSB
bits with 11011

If there is a match, then
the ESC instruction is
fetched and executed by
8087

If there is error during
decoding an ESC
instruction, 8087 sends
an interrupt request

Memory read/ write
Additional words : 𝑹𝑸

-

𝑮𝑻𝟎
8087 BUSY pin high
𝑻𝑬𝑺𝑻

WAIT

Ref: Microprocessor, Atul P. Godse, Deepali A. Gode, Technical publications, Chap 11

Microprocessor
 Royida A. Ibrahem

Alhayali

Co-processor – Intel 8087

123

ESC

Execute the
8086

instructions

WAIT

Monitor
8086/
8088

Deactivate the
host’s TEST pin
and execute the

specific
operation

Activate
the TEST

pin

Wake up the
coprocessor

Wake up the
8086/ 8088

8086/ 8088 Coprocessor

Microprocessor
 Royida A. Ibrahem

Alhayali

