Programmable Logic Device
PLD

PLD

* An IC that contains large numbers of gates, flip-flops, etc. that can be
configured by the user to perform different functions is called a
Programmable Logic Device (PLD). It permits elaborate digital logic
designs to be implemented by the user on a single device. The
internal logic gates and/or connections of PLDs can be
changed/configured by a programming process. On the other hand,
Programmable Logic Devices (PLDs) are the components which do not
have a specific function associated with them.

PLD

The purpose of a PLLD device is to permit elaborate digital logic
designs to be implemented by the user in a single device.

Can be erased electrically and reprogrammed with a new design,
making them very well suited for academic and prototyping

Types of Programmable Logic Devices
SPLDs (Simple Programmable Logic Devices)
— ROM (Read-Only Memory)
— PLA (Programmable LLogic Array)
— PAL (Programmable Array Logic)
— GAL (Generic Array Logic)
CPLD (Complex Programmable Logic Device)
FPGA (Field-Programmable Gate Array)

Programmable Logic

|
E.OM
Eead-Only
Memory

]

Factory Programmsable Field Programmable
Drevices Devices
| |
EI.?[; ﬂ;—* SPLD CPLD P;Pﬁi
g Simple Complex i
Programmable Programmable Birg grﬂmpﬂ" bl Programmable
| Gate Array Loge Devices | Logic Devices Gate Asray
FPEROM PLA PAL AL
Programmable Programmable Programmable Genenc Array
Eead-Only Memory, Loge Array Array Logc Lomc
|

FED

=PLD

FLO

FPGA

LD

PROM H PLA

AL

Type of PLDs

= The three major types of programmable logic
are :-

1) SPLD (Simple Programmable Logic devices)

2) CPLD (Complex Programmable Logic Devices)
and

3) FPGA (Field Programmable Gate Array).

[l I

FLOMNL : Programomable OFR array
PLA . Programamable Logic Array .
Programmable O — AND arrays.

PAL : Programmahble Armay Logic .
Programmable ANIIY array, fixed COVR
AL . Genenie Array Logic
Can be conhigured 1o emulate many
carlier PLID= including thwase with
intermal Flip-Flops
CPLD - Complex PLIY
FPOA - Field Prograommmeable Gate Aarays

Three FPLD Types

= Simple Programmable Logic Device (SPLD)
— LS| device
— Less than 1000 logic gates

* Complex Programmable Logic Device (CPLD)

— VLSI device
— Higher logic capacity than SPLDs
* Field Programmable Gate Array (FPGA)
— VLSI device
— Higher logic capacity than CPLDs

(FPLDs)

SPLDs
fo.g.. PALs)

CPLDs

FPGAs

Fixed AND
Inputs ——p» Array
(Decoder)

Outputs.

(a) Programmable Read Only Memory (PROM)

Inputs Fixed ?R —= Outputs:
(b) Programmable Array Logic (PAL) Device
Inputs Outputs:

(c) Programmable Logic Array (PLA) Device SPLD

AR

(a) Conventional (b) Array Logic
Symbol Symbol

+V

f(A, B, C)=ABC

A O

B O—e KI—O\H
" B O

v]v|v]

* Programmed AND function A’BC’
and its compact notation

— X means fuse intact (not blown)
ABC

'Y

Programmable Programmable

AND OR
Array Array

Programmable
Logic Device

outputs

¢

Programmable Logic Array

PLA (Programmable Logic Array)

e First device specially for implementing logic
circuits, introduced in the early 1970s by
Philips.

e Consists of 2 level of logic gates : a
programmable “wired” AND-plane followed
by a programmable “wired” OR-plane.

e Designed to implement random logic
expression in SOP form.

Programmable Logic Array

I

~x1 I sk <t ! z‘s—
-~ i2 I > f‘#)’
Is
~x2 l 1= 3> (l)
15 L
x3 =
. _Ts e
e 1 |
lPl lP«z lPs Pa
51 53 | 24 o
f, = X:1X> + X X3+ x"1x"ox%x3
fo —x%x;%X + X1 X'ox%x3 + xX,xX3

Programmable Logic Array

=g

Programmable Logic Array

Programmable Logic Array

Implement the following function using PLA [Programmable Logic Array])
Fi(a, b, c)=2m(0, 3,4,7) &Fy(a, b, c)=2m(1, 2,5, 7)

A

C

AR

Programmable Logic Array

O oA 11 10 AEE o1 11 1o

fete]
oo vy 4 o oo E.J":,.J 3‘-1,' .L\:-c
o o r,'ﬁl

L

S NBCD 11 o >) >) 11 > L_:EJ >
e = i | =~ [e I~ =
1o 1 10 E 1 9 I".;
o o 1 1 [(] o o S \I__\I__
L] 1 L] (=] (=] L] L = 7 = A58 a Aoy = 8 - B - Sy
r A L] 1 L] L] A Lo | Py P
g :II :Il ? g ? .;1. ;:. = O o1 11 1o = oo (ol] 11 10
1 o o o o 1 o oo e e HETA oo >) > (" >
1 o [] 1 [=] 1 1 L]
A1 [] - (] L] -1 A1 - [l | 1 1 L By | 1 a
A [] 1 1 1 L] L o
! ! [] (=] b L] L | 11 = = - 11 ul = S =
e LI L LR S -
== O O == D
=) ()

]

=

= i Programmable

L~ .
o e Logic Array

Programmable Logic Array

B, T T — OR fMetroix

)

AND Array

Output AEaE

Programmable Array Logic

PALs use an OR gate array with fixed logic while an AND gate array
which can be programmed as per the requirement of the user. As a
result, these devices express the output as a combination of inputs in

sum-of-products form.

Programmable Array Logic

n lmputs m Untpats

Programmable
Array Logic

Programmable Array Logic

Input Lines{

o

N\,

—\—

Figure 1 Programmable Array Logic (PAL)

AND
GATE
Array

1 OR

OATE
aray

l

l

» Qutput Lines

YY

Programmable Logic Array

__O%Lc Diqa roumn o

-
e H
”
4
-

e

W oo -
o Ry
N =
INW

RoA

&

p%"?"#f"";"
N

o
AN

K— Linde
g s s RS oo rogrammable

aesatary T Logic Array

Yy

Programmable Logic Array

E7AAAAE T SENJIC_E-

=3 ITN <5 COLFF - 1€ FERCOIDL 3T =
T3 s

N
}_.

TCOFXT A TR A
A>T ET

=
;
=
=

s
=

C s

Sy <>

TANNEDT AT
AdETFRCOCSGEFE S DI TI S T =T

A. Difference:

[s. p_:o{ PAL

|

|

1. | It 18 moderately expensive
| and moderately complicated.

2 In this, only the AND array
18 programmable, OR array
J 15 fixed.
3. It 18 easier Lo program
because only the AND gates
are programmable.

i
4 7 t 11 is less flexible due to fixed
| OR gates.

|

l

l

It is expensive than PAL and PROM
and complicated to use

In this, both AND and OR arrays
are programmable

It is complicated to program because
both the AND and OR gates are
programmable

It 158 more flexible than PAL

]

J

Yo

Generic Logic Array

Generic Logic Array (GLA)

e These devices had their properties similar to those of PALs in addition
to which they were electrically erasable and re-programmable. This
important feature proved to be meritorious as it considerably eased
the prototype design which in turn reduced the time to market.

Programmable Read-Only Memory

Sy
| Fixea
n E AND
Inputs : Array
—>

—
—

 —

Programmable

OR

Array

PROM

Programmable Read-Only Memory

my A \|/
Mme X I
X —> ms X
Y] 3108 m,
- 5| Decoder mj3 >
m2
my
Mo

Programmable Read-Only Memory

BB

o7
6
L15
14

3
AZ D2

A1 p1
A0 DO

F3

F2 F1

Fo

PROM

B,

B,

B

Programmable ROM

Design of PROM for 3-bit Binary to 1’s Compliment

! !
Do —XK X
Ba—xX |
D —x X
\
3x8 Ds—>X
Decoderp,
Ds N
De X
b, |
T; *o;’T T—A»—I T—t—)T
\\ /' \ J \ /
\'\ > 4 / . " ; X //
= e &

C, = £m(0,1,2,3)
C; = =m(0,1,4,5)

Co = £m(0,2,4,6)

Using a PROM for logic design

(e

Xx X Mg hH 5”
o0 o0 [
o o | L1
o1 0 11
o 1 |1 g 0

1 1 i (VI
I O 1 10
1 1 0 1
I I 0

!

/]

0 /{f-"
—
-5
'\-\\
Xo— >
D

I

L

o
U Ju e
JUUUUU

b

f
?

[P

(@) Truth table.

|

T

i

—
| f >—fz

(5) PROM realization.

A\l

Programmable Read-Only Memory

A‘*:‘1

D

i
Y

-
[
B

Hong Kong Institute of Vocational Education (Tsing Yi)
Electrical and Telecommunications Course Board

E&TI350 Electronics

> Programmable Logic Devices

Input lines

Output lines
Versatility
Difficulty in
manufacturing,
programming and
testing

PROM PAL PLA
hard-wired prog. prog.
prog. hard-wired prog.
low moderate high
low moderate high

PAL & GAL I/ page 10

AR

Complex Programmable Logic Device

CPLD

e Traditionally, CPLDs have been chosen over
FPGAs whenever high-performance logic is
required, Because of its less flexible internal
architecture, the delay is more predictable
and usually shorter.

Ye

Complex Programmable Logic Device

 Complex Programmable Logic Device (CPLD)

e CPLDs are denser than PALs and comprise of a large number of programmable
logical elements. The interconnection between these macro cells is to be
established by the user through the interconnecting network.

e Here sum-of-product establishing logical elements are combined together to
form structures in order to reduce the number of input-output (IO) pins.

e This facilitates the implementation of more complex logic design with slightly
worse propagation time when compared to that of PALs.

e These offer predictable timing characteristics making them most suitable for
critical control applications with high performance.

e CPLDs are preferred to implement combinational logic based designs.

Complex Programmable Logic Device

fbooooooooooood

O /O blocks
0O | pPD PLD po| O
0 O
‘0 U
0 Programmable interconnect [
O O
O : O
a PLD PLD PLD| o
in . O
AO00000000000000

Complex Programmable Logic Device

:‘EE Logli;:LE[’;)lock Logli;:LIIE:’;)Iock E:
11111 11111
l/O —b{ Interconnection Matrix l/O
11111 11111
5 Logli;:LEE’;)lock Logli;:LIIE:’;)Iock §

Complex Programmable Logic Devices

—p —

/0 «— PAL PAL +«— /O

i

([} 110

Programmable Interstructure
Programmable Interconnect l ® t I
—-

111 111
—
I/ PAL PAL /10
110 110 /[e) 110

Digital Electronics in Hindi

YA

Complex Programmable Logic Device

CPLD (Complex PLD)

- CPLDs were an evolutionary step from even
smaller devices that preceded them

 CPLDs can be thought of as multiple PLDs (plus
some programmable interconnect) in a single

chip.
= The larger size of a CPLD allows you to implement
either more logic equations or a more

complicated design.

= Because CPLDs can hold larger designs than PLDs,
their potential uses are more varied.

A4

Field Programmable Gate Array

Field Programmable Gate Array

= A field-programmable gate array (FPGA) is an imtegrated circuit
designed 1o be configured by a designer after manufacturing.

It contain programmmable logic components called “logic blocks™.

Field Programmable Gate Array

E programmable swiich

I

h
¢
4

S _::1 ogic ceff — S logic cel

I

Conceptual structure of an FPGA device.

£y

Field Programmable Gate Array

Block Diagram of a FPGA

£y

Field Programmable Gate Array

(LLELEL L P

1 4 0 g

Iy
- ,gmmmm\,,,Jummmi, i

Wb
LB:
Logic Block

PN
-

=

.
.
-
-

SB:
Switch Block

40 4 0 g

FI

™ LU

Wl
}-u.mumi

NN

I,

NN

£¢

Field Programmable Gate Array

Vvivhat is an FPRPGAS?

Elocks
ElsckE

-
0% i

Configurable

Lo-mmic

Elocks

LLL -J—-

”_m FEREEEEE
S EEEEEEED
s SRR RRR N
—-.---

TERRRRR

| s

[TTTTTRRertrrrrrennl

Field Programmable Gate Array

logic | 777 logic | 97t logic i T
block ¢ block ¢ 44 | block
il | == Al | &

L=t [.
;

?. flip
logic PO
block ¢ o

flop

|
I
|
1
)
1
|
'
]
&
1

- :I - ‘ {
gic |7
ocK &0

411 three-state

- buffers 3
1O —— > <

= 2 * {f % i

configuration Mux 7

memory bits

(a) (b)

g0
—
S
-
.
*
.
-

o=

58
n

o= .'."..“ |
H' '

&8 FOA

ox
H

% 0
E .

- ALY

Y
N
1, .4

1

Field Programmable Gate Array

= S
FPGA

m Programmable (= reconfigurable) Digital System

m Component
Basic components

= Combinational logics
= Flip Flops

I Macro components
= Multiplier (large combinational logic)
= Random Access Memory (Large Density)
= Read Only memory (Large Density)
= CPU

Programmable Interconnection
Programmable Input/Output circuit
Programmable Clock Generator

2014/10/5

1Y

Field Programmable Gate Array

Field Programmable Gate Array

SRAM

Mumplo:oi’

o
| e Inputs

il

il

0[]
|

il

17—

RS ——
|
-
3

i

O- F/F

cLe

-~ Basic Loglc
Element Output

€9

Field Programmable Gate Array

> S:erléallzer/de_serrahze.r

> Large amounts of on-chip memory

> Dedicated multiplier/accumulator (“DSP”)
components

Field Programmable Gate Array

M m O C 0O

CLK

Top 10 FPGA Advantages

Better Parformance

) Programmability

Cost Efficiency

Parallel Task Perforrmance

Prototyping
Faster Time to Market

) Simpler Design Cycles

. Adaptability

Real Time Application

)| Systerm on Chip

oy

CPLD

Flexibility Low
FPrice Low
Security High
Speed High

Capacity Flexibility

Application Simple

oy

FPGA

An afield-programmable gate array (FPGA) is a logic device
that contains a two-dimensional array of generic logic cells
and programmable switches. The conceptual structure of an
FPGA device is shown in Figure .1. A logic cell can be
configured (i.e., programmed) to perform a simple function,
and a programmable switch can be customized to provide
interconnections among the logic cells.

A custom design can be implemented by specifying the
function of each logic cell and selectively setting the
connection of each programmable switch. Once the design
and synthesis are completed, we can use a simple adaptor
cable to download the desired logic cell and switch

configuration to the FPGA device and obtain the custom circuit.
Since this process can be done "in the field" rather than
"in a fabrication facility (fab)," the device is known as
field programmable.

e jogic ceil S = iogic ceft ——1 S logic cel e

Conceptual structure of an FPGA device.

Figure -1-

LUT based logic cell

A logic ce
combinationa
common met
circuit is a

| usually contains a small configurable
circuit with a D-type flip-flop (D FF). The most
nod to implement a configurable combinational

ook-up table (LUT). An n-input LUT can be

considered as a small 2*n memory. By properly writing the
memory content, we can use an LUT to implement any n-input
combinational function. The conceptual diagram of a three
input LUT-based logic cell is shown in Figure

2.(a). An example of a three-input LUT implementation of a
xorb xor c is shown in Figure 2.(b). Note that the output of the
LUT can be used directly or stored to the D FF. The latter can
be used to implement sequential circuits.

clk

LUT

Figure 2-a Conceptual Diagram

Hc>on—\c>|—\|—\c,|

L = B O O O O

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Figure 2-b Example Table

Figure 2- Three input LUT based logic circuit

n Inputs m Outputs

Combinational

Circuit

Combinational Circuit

Vs

Sequential Circuit

Input y y Output
Combinational
Circuit
Positive
Clock
Feedback Signal

Memory

Combinational vs Sequential Circuits

Memory element is absent Memory element is present

—_— >
N ‘ » COmcgirr;::Itonal
— > Combinational ———» I—’
Circuit
’ I Memory |«

ECE380 Digital Logic

Introduction to Logic Circuits:
Boolean algebra

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-1

@ Axioms of Boolean algebra

» Boolean algebra: based
on a set of rules derived
from a small number of
basic assumptions

(axioms)
e 1a 0-0=0 e 3a 0:1=1-0=0
e 1b 1+1=1 e 3b 1+0=0+1=1
e 2a 1-1=1 e 4a If x=0 then x’'=1

e 2b 0+0=0 4b If x=1 then x’=0

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-2

& Single-Variable theorems

e From the axioms are derived e Single-variable

some rules for dealing with theorems can be proven
ingl iabl . .
single variables by perfect induction

« 5a x-0=0

e 5p x+1=1 e Substitute the values
e 6a Xx-1=X Xx=0 and x=1 into the
e 6D X+0=x expressions and verify
e 7a X-X=X using the basic axioms

e 7b Xx+Xx=x
e 8a x-x'=0
e 8b x+x'=1
e 9 X’'=x

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-3

& Duality

» Axioms and single-variable theorems are
expressed in pairs
— Reflects the importance of duality

= Given any logic expression, its dual is formed
by replacing all + with -, and vice versa and
replacing all Os with 1s and vice versa

— f(a,b)=a+b dual of f(a,b)=a-b
— f(x)=x+0 dual of f(x)=x-1

e The dual of any true statement is also true

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-4

@ Two & three variable properties

e 10a.
e 10b.

e 11a.
e 11b.

e 12a.
e 12b.

e 13a.
e 13b.

X-y=Yy-X Commutative
X+y=y—+X
X-(y-z2)=(xy)-z Associative

X+H(y+2)=(x+y)+2

X-(y+2z2)=X-y+X-z Distributive
X+y-z=(X+y)-(x+2)

X+X-y=X Absorption
X: (X+Yy)=x

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-5

@ Two & three variable properties

e 14a.
e 14b.

e 15a.
e 15b.

e 16a.
e 16b.

X-y+X-y'=X Combining
(x+y)-(x+y")=x

xXy)y=x+y’ DeMorgan’s
(xX+y)'=x"y’ Theorem

X+X'-y=X+Yy
X-(X'+y)=xy

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-6

@ Induction proof of Xx+Xx’-y=Xx+Yy

e Use perfect induction to prove x+x’-y=x+y

X y X'y X+XYy | X+y
0] 0] 0] 0] 0
0 1 1 1 1
1 0] 0 1 1
1 1 0 1 1
equivalent

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-7

@ Perfect induction example

= Use perfect induction to prove (Xxy) =x'+y’

X y Xy | xy) | X | VY X'+y’
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

equivalent

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-8

@ Proof (algebraic manipulation)

* Prove
— (X+A)(X'+A)(A+C)(A+D)X = AX
— (X+A)(X'+A)(A+C)(A+D)X

— (X+A)(X'+A)(A+CD)X (using 12b)
— (X+A)(X’+A)(A+CD)X

— (A)(A+CD)X (using 14b)
— (A)(A+CD)X

— AX (using 13b)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-9

& Algebraic manipulation

» Algebraic manipulation can be used to
simplify Boolean expressions
— Simpler expression == simpler logic circuit
= Not practical to deal with complex
expressions in this way

« However, the theorems & properties provide
the basis for automating the synthesis of
logic circuits in CAD tools

— To understand the CAD tools the designer should
be aware of the fundamental concepts

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-10

& Venn diagrams

« Venn diagram: graphical illustration of
various operations and relations in an algebra
of sets

e A set s is a collection of elements that are
members of s (for us this would be a
collection of Boolean variables and/or
constants)

» Elements of the set are represented by the
area enclosed by a contour (usually a circle)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-11

@ Venn diagrams

(a) Constant 1 (b) Constant O

@~ | (O

(c) Variable X a@x

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-12

& Venn diagrams

DD

(e) Xy (f) X+Y
(9) Xy’ (h) Xy+z
Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-13

@ Venn diagrams (X+y)’'= X'y’

® oo e
@D ||| (e

(X+Y) X'y’ _
Equivalent
’ @@ @@ Venn diagrams
DeMorgan’s imply equivalent
Theorem functions

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-14

& Notation and terminology

» Because of the similarity with arithmetic
addition and multiplication operations, the
OR and AND operations are often called the
logical sum and product operations

 The expression
— ABC+A'BD+ACFE’
— Is a sum of three product terms

 The expression
— (A+B+C)(A’+B+D)(A+C+E’)
— Is a product of three sum terms

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 3-15

@ Precedence of operations

< In the absence of parentheses, operations in a logical
expression are performed in the order
— NOT, AND, OR

e Thus in the expression AB+A’B’, the variables in the second
term are complemented before being ANDed together. That
term is then ORed with the ANDed combination of A and B (the

AB term)

Dr. D. J. Jackson Lecture 3-16

Electrical & Computer Engineering

& Precedence of operations

e Draw the circuit
diagrams for the
following

— f(a,b,c)=(a’+b)c

— f(a,b,c)=a’b+c

A

B

i i
[VTG T -
T
. —
| — V [

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 3-17

ECE380 Digital Logic

Combinatorial Circuit Building
Blocks:

Multiplexers

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-1

Multiplexers

= A multiplexer (MUX) circuit has
— A number of data inputs
— One (or more) select inputs
— One output

» It passes the signal value on one of its data inputs to
its output based on the value(s) of the select
signal(s)

s| f(s,X1,X5)
0 X1
f=x,8’+X%X,S
1 2 1 X2

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-2

Multiplexer implementations

x CoO— N\ — |
|/
—) > s
S hY
y (ED— Y — — f
The preferred
implementation
Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-3

4-input multiplexer

* A 4-input multiplexer ‘selects’ one of four data inputs
to be output based on the values of 2 select lines

S1 Sol| f
O O |wg

0O 1
1 O |w,
11

f=S,"Sg’Wg+S, SgW;+5,S¢’'W,+S;SoW4

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-4

Building a 4-input MUX

e A 4-input multiplexer can be constructed using 2-
input multiplexers

So
w,—10
S1

W, — y

0]

f

1
w, — 0
w; —(1

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-5

MUX application (a 2x2 crossbar)

e A circuit with n inputs and k S
outputs whose function is to {
provide a capability to X, Y1

connect any input to any
output is called a nxk
crossbar switch

— With 2 inputs and 2 outputs,
it is called a 2x2 crossbar

— Useful in applications where —
it is necessary to connect
one set of wires to another
set of wires, where the
connection pattern changes
from time to time X2 0

— Telephone switching Y2
networks are an example 1

X2 Y2

>

— Y1

A\I—\

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-6

MUX application (prog. switch)

e In programmable devices (PLDs, CPLDs and FPGAS)
programmable switches connect wires inside the
device
— These can be implemented with multiplexers

storage

o/1 o/1——
cell

Il b

i2 — 1

An FPGA logic block
with programmable inputs

o/1- 071

MUX implementation

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-7

Logic functions using MUXs

e MUXs can be used to synthesize logic functions

— The LUT implementations use MUXs to select a (constant)
value from a look-up table

e Consider the XOR function

P B O O|D
R O L O|T
o r P CD‘*
SO r B O TWYO

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-8

Logic functions using MUXs

e The previous XOR solution is not particularly efficient
a b | f
O O

a |f
when a=0, f=b o |b

R Rk O
P O R

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-9

Logic functions using MUXs

 Implement the following with a 2-input MUX
and any additional logic gates

a b | f
O 0|1
0O 1|1
1 0|0
1 11

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-10

Logic functions using MUXs

e A 3-input XOR can be implemented with two 2-input
MUXs

ry®z

m (y®z)

P PP P OOO O|X

P P OOPREPROOKK

P OFRr OFR OF ON

P OOFR OFR P O
N

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-11

Logic functions using MUXs

e Implement the following with 2-input MUXs
and any additional logic gates

P PP P OOO OfX
P P OORROOKK
P OFRr OFR OFR OfN
P OO R R OR L[

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-12

Shannon’s expansion theorem

= Any Boolean function f(w,,...,w,) can be
written in the form
f(wy,...,w)=(w,)" - f(O,w,,...,.w,)+(w,) - f(1,w,,...,w,)
e The expansion can be done using any of the
n variables
< 1T f(wy, Wy, W3)= WyWo+W Wi +W,ows
— Expanding this in terms of w, gives
f(wy,w,,w3)= W1(W2+W3)+(W1) (W2W3)

J L

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-13

f when w,= f when w,=

Shannon’s expansion example

W1W2W3f

-
000 O w1| f
001 O 5 W
010 O 1| wy+w,
011 1

<
100 O
101 1 W :)_le

2

110 1 W3 1

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-14

Shannon’s expansion example

f=X'y'Z’+Xy'z+X'yZ+Xy'Z’+Xy’Z
choose x as the expansion variable

f=xX'(y'z’+y’'z+yz)+x(y'z’+y’z)
f=x’(y’+z)+x(y’)

GEa

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-15

P R PP OO O O|X
P P OORROOIK
P OFRr OFRr OR OfN
OO R PP OPR RP|=—

Shannon’s expansion example

=Xy’ Z’+X'Yy'Zz+X'YyZ+XYy'Z’+XYy’'Z

choose z as the expansion variable

P PP P OOO OfX
P P OORPROOKK
P OFRP OFR OFR OfN
OO R PR OR BR[|

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 21-16

Lecture Three

Shannon's Expansion Theorem

T11a:
F(XL...,Xn)=F(0, X2,..., Xn)e X1+ F(L X2,..., Xn)e X1
T11b:

F(X1,...,Xn)=[F (L, X2,..., Xn)+ X1]e[F (0, X 2,..., Xn) + X1]

Shannon's Expansion Theorem

Let X1=0inT11a

F(XL...,.Xn)=F(0,X2,...,Xn)e0+F (L X2,...,Xn) 0

F(XL,...Xn) = F(0,X2,...,Xn) o1+ F(L X2,..., Xn)e0
F(X1..., Xn)=F(0, X2,..., Xn)

Let X1=1inT11a
F(XL...,Xn) =F(0,X2,..., Xn) o1+ F(L X2,...,Xn) o1
F(XL..,Xn)=F(0,X2,....Xn)e0+F(L X2,..., Xn) e1
F(XL...,Xn)=F(L X2,..., Xn)

Shannon's Expansion Theorem

F(X1,...,Xn)=F(0,0,X3,...,Xn)e X1e X2+ F(0,1, X3,..., Xn) e X1e X 2
+F(L0, X3,..., Xn)e X1e X2+ F(LL X3,..., Xn)e X1e X 2

— 100 X1e X2+ 110 X1e X2+ 120 X1eX2+130X1e X2
=|0emO+11leml+12em2+13em3

=2 Kiem \here m =m (X1, X2)

Example
Design a circuit using MUX to implement the following function by
applying Shannon's Expansion Theorem T11a with respect to A and B

F(A,B,C)=A+B.C
Solution
F(A,B,C)=F(0,0,C).AB+F(0,1,C).AB
+F(1,0,C).AB+F(1,1,C).AB

F(0,0,C)=0+0.C=0 ENO—o 2 »
F(0,1,C)=0+1C=C ?:; X —F
F(1,1,C)=1+1C=1]

A B

Figure (1)

Analyzing a Multiplexer Design

2"-1
F(AB,C)= Y Kiem Where m.=m.(A, B)

k=0
=|0emO0+lleml+12em2+[3em3

Py EN—OEN

—00_m£)+90_m1+10m2+C0m3 010 4
~0AB+CAB+1.AB+C.AB i:; Mux [F
=AB.C+AB.(C+C)+AB.C c—31| (|)
=m,+m, +m, +m, A B

Z 2 4 5 7 Figure (2)

Field Programmable Gate Array (FPGA)
* FPGAs are based on gate array technology,

unlike the PROM

technology of early PLDs. These devices comprise configurable logic
blocks (CLBs) along with an interconnection matrix running in

between.

* FPGAs work based on the look-up tables (LUTSs)
that form a part of CLB. The user has to program t
a certain logical function and then use the interco

and the flip-flops
ne CLBs to perform
nnection matrix to

connect one or more logic blocks together. Furt
input-output (1/0) ports facilitating the design bot
programming as well as debugging.

ner, they comprise
h from the point of

* These devices are capable of implementing state-machine-based
sequential designs along with designs based on combinational logic.

* FPGAs are used to realize more complex designs when compared to
CPLDs due to their high density. Moreover, FPGAs offer the customer
the flexibility to design/re-design the logic even after being deployed
in the work field which gives them the name field-programmable.
However, FPGAs have larger propagation delays when compared to
CPLDs.

* All of these PLDs are programmable using device programs that
transfer the Boolean logic pattern onto the programmable device

Programming Technologies

* There are a number of programming technologies that have been
used for reconfigurable architectures. Each of these technologies has
different characteristics which in turn have a significant effect on the
programmable architecture. Some of the well-known technologies
include static memory, flash, and anti-fuse.

SRAM-Based Programming Technology

Static memory cells are the basic cells used for SRAM-based FPGAs. Most commercial
vendors use static memory (SRAM) based programming technology

in their devices. These devices use static memory cells which are divided throughout
the FPGA to provide configurability. An example of such a memory cell is shown

in Fig.3 . In an SRAM-based FPGA, SRAM cells are mainly used for the following
purposes:

1. To program the routing interconnect of FPGAs which are generally steered by small
multiplexors.

2. To program Configurable Logic Blocks (CLBs) that are used to implement logic functions.

* SRAM-based programming technology has become the dominant
approach for FPGAs because of its re-programmability and the use of
standard CMOS process technology therefore leading to increased
integration, higher speed and lower dynamic power consumption of
new process with smaller geometry. There are however a number of
drawbacks associated with SRAM-based programming technology. For
example an SRAM cell requires 6 transistors which makes the use of
this technology costly in terms of area compared to other
programming technologies. Further SRAM cells are volatile in nature
and external devices are required to permanently store the
configuration data. These external devices add to the cost and area
overhead of SRAM-based FPGAs.

W ¥ B
BL BL

Figure -3-

Flash Programming Technology

One alternative to the SRAM-based programming technology is the use
of flash or EEPROM-based programming technology. Flash-based
programming technology

offers several advantages. For example, this programming technology is
nonvolatile in nature. Flash-based programming technology is a/so
more area-efficient than SRAM-based programming technology. Flash-
based programming technology has its own disadvantages, flash-based
technology uses non-standard CMOS processes.

Anti-fuse Programming Technology

An alternative to SRAM and flash-based technologies is anti-fuse
programming technology. The primary advantage of anti-fuse programmin
technology is its low area. Also, this technology has lower resistance an
parasitic capacitance than the other two.

Programming Technologies

* programming technologies. Further, this technology is non-volatile in
nature. There are however significant disadvantages associated with this
programming technology.

* For example, this technology does not make use of the standard CMOS
process. Also, anti-fuse programming technology-based devices can not be
reprogrammed.

FPGA Interconnection Technologies
FPGA interconnect technologies are SRAM, FLASH, and Antifuse

SRAM FLASH Antifuse
N Y
TN
4;,.;:;
Reprogrammable Reprogrammable One-time programmable

and volatile

and Non-volatile and Non-volatile

Source: Introduction to FPGA Design for Embedded Systems 7. Microsemi Single-chip FPGA solutions
https://www.coursera.org/lecture/intro-fpga-design-embedded-systems/7-microsemi-single-chip-fpga-solutions-rTqDL

Figure -4-

Programmed
antifuses

o ot l
\ /.
I>3//‘\\

Logic 1

AND

; ; ; ; <— Pull-up resistors
&)—q y=la&b

Logic 1

b S

NOT

..

AND

Volatile memory —
SRAM programmable

; ; ; ; <— Pull-up resistors
&)—q y=a&lb

Figure -5-

Predominantly
ass ociated with ...

Technology Symbol

Fusible-link SPLDs

Antifuse FPGAs

EPROM SPLDs and CPLDs

EZ2PROM/ SPLDs and CPLDs
FLASH (some FPGAS)

SRAM FPGAs (some CPLDs)

Classifying Devices

Device can be classed based on their level of programmability

One-Time Programmable: devices can be programmed only once; it's
contents can not be changed. While typically these devices are fuse or
anti-fuse-based, they can also be low-cost EPROM devices.

Re-programmable: These devices can have their configuration loaded
more than once. SRAM-based and Flash-based devices may be reloaded
without restriction.

Lecture Four

Programmable
Logic Devices

PLD
i .. l
Simple Programmable Complex Programmable Field Programmable
Logic Device Logic Device Gate Array
SPLD EELID FPGA

Complex Programmable Logic Devices (CPLDs)

Complex Programmable Logic Devices (CPLDs) integrate multiple SPLDs into
a single chip. A typical CPLD provides a logic capacity equivalent to about 50
single SPLDs. Altera, the world’s second and largest manufacturer -
presently, the Ilargest manufacturer is Xilinx - of programmable
semiconductors, introduced the MAX 5000, MAX 7000, and MAX 9000
series of CPLDs. MAX Wired — AND gates OR gate Flip Flop

5000 is based on older technology, the MAX 7000 family is a
high—-performance PLD and it is fabricated with advanced CMOS technology
designed with state-of-the-art logic capacity and speed performance, and
MAX 9000 is very similar to the MAX 7000 except that it has higher logic
capacity.

CPLD
(Complex programmable logic devices)

= Commercially Available CPLDs
— Altera CPLDs
— Advanced Micro Devices (AMD) CPLDs
— Lattice CPLDs
— Cypress CPLDs
— Xilinx CPLDs
— Altera FLASHIlogic CPLDs

Altera CPLD

= Altera has developed three families of chips that
fit within the CPLD category:
— MAX 5000
— MAX 7000, and
— MAX 9000

= MAX 5000 represents an older technology that
offers a cost effective solution,

= MAX 7000 series is widely used and offers state-
of-the-art logic capacity and speed-performance.

/O

=)

-

Logic Block
PLD

Logic Block
PLD

=

—ﬁ Interconnection Matrix k—

=

-

11111 11111

Logic Block
PLD

Logic Block
PLD

=

/O

CPLD

FB

FB

er]

FB

]

FB

Interconne
Matrix

¥

Detail of CPLD

1/0

A Complex Programmable Logic Device (CPLD) is a programmable logic
device and can be programmed by using VHDL. CPLDs are based on EPROM
or EEPROM technology. CPLDs have extended density than the SPLDs. The
concept of CPLDs is to have a few macrocells on a single chip with simple
logic paths. CPLDs are classified depending on the architecture which gives
rise to high speed, detailed timing, and simple software flow. The basic CPLD
consists of the configurable logic block (CLB) which consists of AND gate
arrays and interconnects. The logic blocks are programmable AND, fixed OR
devices. PALs and GALs are available only in small sizes, equivalent to a few
hundred logic gates. CPLD is an arrangement of multiple SPLD-like blocks on
a single chip. CPLD consists of multiple circuit blocks in the chip. The circuit
block in CPLD are the same as that of PLA or PAL blocks.

The figure below shows an example of a CPLD. This CPLD has four PAL
blocks which are connected interconnection wires. The PAL block is also
connected to a sub-circuit known as an 1I/O block. The |/O block is
connected to a number of input and output pins. The PAL block
consists of macrocells. The macrocell consists of flip-flop, a
multiplexer, and a tri-state buffer. The flip-flop is used to store the
output value produced by the OR gate. The tri-state buffer acts as a
switch. In the function block, the AND array gets inputs from the 1/0
blocks and other function blocks. The product terms are given to fixed
OR gates. The outputs of the multiplex or are then sent through a
clocked flip-flop. The function blocks are designed similarly to PAL
architectures.

The I/0O block is used to drive signals to the pins of the CPLD device. The
CPLD interconnect is a programmable switch matrix.

170 block

Altera-Flash-Logic-
CPLD

Interconnecting wires

Y

PAL-like block

—y |

D 0

Clcok—=

> FF

v

Macrocells

Tri-state
MUX buffer

pin

36 Inputs From 1A
SN —

48 AND Gates
ek / Programmable
%c of 16 OR Gates

/ Select \ To IA To IA

/

D Q

T
-,

1/0 Pin

CE
=S CK Programmable
Enable
Flip-Flop
~—— g —— N, - e _— s
Part of PLA Simplified Macrocell Output Cell

Macrocells

FPGA

Normally FPGAs comprise of:
e Programmable logic blocks which implement logic functions.
e Programmable routing that connects these logic functions.

e |/O blocks that are connected to logic blocks through routing
interconnect and that make off-chip connections.

A generalized example of an FPGA is shown in the Figure below where configurable
logic blocks (CLBs) are arranged in a two dimensional grid and are interconnected
by programmable routing resources. 1/O blocks are arranged at the periphery of
the grid and they are also connected to the programmable routing interconnect.
The “programmable/reconfigurable” term in FPGAs indicates their ability to
implement a new function on the chip after its fabrication is complete. The
configurability programmability of an FPGA is based on an underlying
programming technology, which can cause a change in the behavior of a pre-
fabricated chip after its fabrication.

arririri
LJLJLJL]

Firrarir

LJLJLJL]
Firarir
LJLJLJL]

LJLJLJL]

rrIrr

Overview of FPGA Architecture

Macro cell Most FPGA devices also embed certain macro cells or macro
blocks. These are designed and fabricated at the transistor level, and
their functionalities complement the general logic cells. Commonly
used macro cells include memory blocks, combinational

multipliers, clock management circuits, and 1/0 interface circuits.
Advanced FPGA devices may even contain one or more prefabricated

Processor cores.

Overview of the Xilinx Spartan3 devices

Xilinx Spartan-3 family FPGA devices. Based on the ratio between the number

of logic cells and the I/0O counts, the family is further divided into several subfamilies.

Our discussion applies to all the subfamilies.

Logic cell, slice, and CLB The most basic element of the Spartan-3 device is a /ogic

cell (LC), which contains a four-input LUT and a D FF, similar to that in Figure below.

In addition, a logic cell contains a carry circuit, which is used to implement arithmetic
functions, and a multiplexing circuit, which is used to implement wide multiplexers. The
LUT can also be configured as a 16-by- 1 static random access memory (SRAM) or a 16-bit
shift register.

LUT

clk

Conceptual Diagram

To increase flexibility and improve performance, eight logic cells are
combined with a special internal routing structure. In Xilinx terms, two

logic cells are grouped to form a s/ice, and four slices are grouped to
form a configurable logic block (CLB).

oomp

CcoO

CLK

LUT

l

_/

Cli

Logic cell

CLK

ouT

Slice

Logic CTell (LOC)

A Slice containing two logic cells

[configurable logic block (CLB)

A l RN Slice Slice
4 cs \ L] cue Logic cell | Logic cell_|
— r — Logic cell l Logic cell I
J . g » P» :.
‘: 'r‘ Slice Slice
< cws] ce Logic cett | Logic cell |
' J’ _r'_r‘ Logic cell | Logic cell |

A CLB containing four slices (the number of slices depend on
the FPGA family)

Example (1):-

Implement the following using 4X1 multiplexer and any any additional
Iogic gates, using wlw2 as a selector?

IR T ———
., 0
0
1

71

W3
W3
0

R B B B O O O O
= O O +» B O O
- O B O +»r O +—» O
oo o » O » O O O

L O r»r O

W2
w1

W3

Implementation of solution of
example -1-

Example (2):-
Implement the following using 2X1 multiplexer?

LooK UP-table

GO OB ONEH AN OEN DDA GBE

o—__/—__/—\"_ll‘/ﬂ\“_/ALA/{/{/
TR A R

Example (3):-
Implement the following using 2X1 multiplexer?

a b c v

RO O O O

=

oOrr » O O

o

oOrr O +—» O

(Y

o r B B O = O O

0 —»

1 —

1 —»

1 —>

/

H

Y

¥

H

H

Y

-

v

v

¥

0 —»

THE DIFFERENCE BETWEEN

FPGA v CPLD

Flexibility Loww High
Price Loww High
Security High Loww

Capacity Loww High

>

S

@ Speed High High
B

Application Simple Complex

hrdwanebee com

ECE380 Digital Logic

Synchronous Sequential Circuits:
State Diagrams, State Tables

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-1

Synchronous sequential circuits

» Circuits where a clock signal is used to control
operation are called synchronous sequential
circuits
— The term active clock edge refers to the clock edge that

causes a change in state (positive or negative)

» Realized using combinational logic and one or more
flip-flops

« Two models for synchronous sequential circuits

— Moore model: circuit outputs depend only on the present
state of the circuit

— Mealy model: circuit outputs depend on the present state
of the circuit and the primary inputs
e Sequential circuits are also called finite state
machines (FSM)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-2

Moore versus Mealy machines

W Combinational . Combinational
circuit Flip-flops circuit
. Q f
clock

Moore state machine

W Combinational . Combinational
L Flip-flops L —
circuit Q circuit f
clock

Mealy state machine

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-3

Basic design steps

« We will introduce techniques for sequential
circuit design via a simple example

» Design a circuit that meets the following
specifications:
— The circuit has one input, w, and one output, z
— All changes in the circuit occur on the positive
edge of the clock signal
— Output z=1 if the input w was 1 during the two
immediately preceding clock cycles
= From this specification it is obvious that z
cannot depend solely of the value of w

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-4

Sequences of signals

e The example input and output sequence
below aides in the description of the circuit

Clock

cycle Lt |G|ttt |t |t | Ty T
w 0/1|0(1]|1 111 1
z 0 0 1 1|10

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-5

State diagram

» The first step in designing an FSM is
determining how many states are needed
and which transitions are possible from one
state to another
— No preset procedure for this
— The designer must think about what the circuit is

to accomplish

= A good beginning is to define a reset state
that the circuit should enter when power is
applied or when a reset signal is received

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-6

State diagram

e For our example, assume the starting state is
called A

e As long as w=0, the circuit should do nothing
and z=0

reset

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-7

State diagram

e When w=1, the circuit should ‘remember’ this
by transitioning to a new state (B)

e This transition should occur at the next
positive edge of the clock signal

reset

W=O w=1

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-8

State diagram

e When in state B and w=1, the circuit should
‘remember’ this by transitioning to a new

state (C)

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-9

Complete state diagram

Moore model state diagram

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 27-10

State table

» A state diagram describes circuit functionality, but
does not describe circuit implementation

e Translation to a tabular form is necessary

e The state table should contain

— All transitions from each present state to each next state
for all valuations of the input signals

— The output, z, is specified with respect to the present state

Present Next state | Qutput
state w=0 | w=1
A A B 0
B A C 0
C A C 1

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-11

State assignment

e The states are defined in terms of variables
(A, B, and C)

= Each state is represented by a particular
valuation of state variables

» Each state variable is implemented with a
flip-flop

* Since three states have to be realized, it is
sufficient to use two state variables

— Use y,y, for the present state (present state
variables)

— Use Y,Y, for the next state (next state variables)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-12

State-assigned table

Next state
Present Output
state w=0 w=1 zp
y2yl Y2Y1 Y2Yl
00 00 01 0
01 00 10 0
10 00 10 1
11 dd dd d

Note the addition of the y,y,=11 state. Although it is
not used, it is needed for completeness.

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-13

Next-state and output maps

e K-maps are constructed from the state table
for:
— Circuit outputs (z in this case)
— Inputs for the flip-flops (next-state K-maps)

» Constructing the next-state maps depends on
the type of flip-flop (D, T, JK) used for the
implementation
— D is the most straightforward: next-state maps

are constructed directly from the state table since
- Q(t+1)=Q*=D
— T and JK implementations will be covered later

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-14

State table and next-state maps

Next state
Present output
state w=0 w=1 zp
y2yl Y2Y1 Y2Y1
00 00 01 0
B 01 00 10 0
10 00 10 1
11 dd dd d

YoY1

IN_00 01 11 10

0] 0 0 d 0

1 o|ld]|o
Y =wy;'Y,’

YoY1

IN_00 01 11 10

0 0 0 d 0

SRS EE

Yo=w(y1+Ys)

Electrical & Computer

Engineering

Dr. D. J. Jackson Lecture 27-15

State table and output map

Next state
Present Outout
state w=0 w=1 zp
y2yl Y2Y1 Y2Y1
00 00 01 0
B 01 00 10 0
C 10 00 10 1
11 dd dd d

Electrical & Computer

Engineering

Dr. D. J. Jackson Lecture 27-16

Circuit diagram

ﬁD
Y2 Y2
D 0 z

Clock
Resetn

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-17

Timing diagram

t t t t t t t t t t ¢t
0 1 2 3 4 5 6 7 8 9 10

cock, [LLTLUTU LWL
w o LT L L]

w o L[] [
% [
. [R R

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 27-18

ECE380 Digital Logic

Synchronous Sequential Circuits:

Implementations using D-type,
T-type and JK-type Flip-Flops

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-1

Counter design example

= Design a 2-bit counter that counts
— in the sequence 0,1,2,3,0,... if a given control signal U=1, or
— in the sequence 0,3,2,1,0,... if a given control signal U=0
e This represents a 2-bit binary up/down counter
— An input U to control to count direction
— A RESET input to reset the counter to the value zero
— Two outputs (Z,Z,) representing the output (0-3)
— Counter counts on positive edge transitions of a common
clock signal
» Design this counter as a synchronous sequential
machine using
— D-type, T-type, JK-type flip-flops

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-2

Counter state diagram

reset

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-3

Counter state table

Present Next state Output
state Uu=0 Uu=1 Z.Z,
A D B 00
B A C o1
C B D 10
D C A 11

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-4

State-assigned state table

e Choosing a state assignment of A=00, B=01, C=10
and D=11 makes sense here because the outputs
Z,Z, become the outputs from the flip-flops directly

Next state
Present Output
state u=o0 | u=1 P
Z,Z,
YY1 Y,Y, Y,Y,
A 00 11 01 00
B 01 00 10 01
C 10 01 11 10
D 11 10 00 11

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-5

D-type flip-flop implementation

e When D flip-flops are used to implement an
FSM, the next-state entries in the state-
assigned state table correspond directly to
the signals that must be applied to the D
iInputs

e Thus, K-maps for the D inputs can be derived
directly from the state-assigned state table

= This will not be the case for the other types
of flip-flops (T, JK)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-6

State table and next-state maps

Next state
Present Outout
state uUu=0 u=1 P
YY1 2120
Y2Y1 Y2Y1
A 00 11 01 00
B 01 00 10 01
C 10 01 11 10
D 11 10 00 11
Z,=Y, Zy=Y,

u

u

YaY1

00 01 11 10
O’m o|o f
1] J o|o @

Y=y,

YaY1

00 01 11 10
0 0 0
1] o0 0

Yo=(Y.@y,®u)’

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-7

Circuit diagram (D flip-flop)

Vce
DC D P%o Z
> 0
CLRN
)
bD? o
D° ;PRN"‘ Z,
U CLRN
clock (I’

reset

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-8

Design using other flip-flop types

e For the T- or JK-type flip-flops, we must
derive the desired inputs to the flip-flops

» Begin by constructing a transition table for
the flip-flop type you wish to use
— This table simply lists required inputs for a given

change of state

e The transition table is used with the state-
assigned state table to construct an
excitation table
— The excitation table lists the required flip-flop

inputs that must be ‘excited’ to cause a transition
to the next state

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-9

Transition tables

J KQQ" QQ"|J K T Q|Q* Q QY |T
0O0OO0|O OO0 |[0D 0O0|O OO0 |0
0011 01 (1D 01|1 01 |1
0100 1 0 |[D1 101 10 |1
Oo11|0 11 |[DO 110 11 |0
100|1 JK transition T transition
1011 table table
110|1

11110 The transition table lists required flip-flop

inputs to affect a specific change

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-10

T-type flip-flop implementation

Use entries from the transition table
to derive the flip-flop inputs based on
the state-assigned state table.

T - -

QQ B excitation table

00 (O Flip-flop inputs

o1 |1 Present Output
state U=0 U=1

10 |1 Ya2Y1 “io

11 |0 Yo¥i | ToTa | Yo¥y | ToTy
00 11 | 11 | o1 | o1 00
01 00 01 10 11 01
10 o1 | 11 | 11 | 01 10
11 10 01 00 11 11

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-11

Excitation table and K-maps

VA4
00 01 11 10

0‘1 1 1 1‘

u

Present Flip-flop inputs

state | U=0 | U=1 O;”;Ut 3 CEEYENEY
Y2 Tl T,T, o T,=1

0 = o1 00 YaY1

ol | o1 11 01 N\ 00 01 11 10
10 11 01 10 0 E o 0 E
11 01 11 11 o o] o

Z2,=Y, Zoy=Y: To=yu+y;'u’=(y,®u)’

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-12

Circuit diagram (T flip-flop)

Vcce |
Vcc >T a Z,
j“J
U :)Dc >T a Z,
CLRN
clock
reset

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-13

JK-type flip-flop implementation

e Use entries from the transition table to derive the
flip-flop inputs based on the state-assigned state
table
— This must be done for each input (J and K) on each flip-flop

.
Next state Q Q J K
Present Output 0 0 0D
state | U=0 | U=1 | ';
1<-0
YoY1 Y,Y, Y,Y, 01 1D
00 11 | o1 00 10 D1
01 00 10 01 11 (DO
1 1 11 1 "
0 0 0 JK transition
11 10 00 11 table

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-14

JK-type flip-flop implementation

QQ"|J K Flip-flop inputs

OO0 OD Present U=0 U=1 Output

01 |1 D |S&e 7.7,

Ya¥i | Y2 [K| | Y,y | K| gk
10 |D1 P S P P
11 IDoO 00 |11 |1D| 1D |01 |op|1D| o0
N o1 |oo|op|p1|10]1D|D1| 01

JK transition 10 |o1|p1|1p |11 |p0ol1D| 10

table 11 |10 |po|p1]oo|p1|D1| 12

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-15

Excitation table and K-maps

Flip-flop inputs

Present
state Uu=0 u=1 Output

Z,Z,

Ya¥1 | Yo¥ | K 3K, Y,y | K| 3K
1 2 1 2 1
00 11 (1D | 1D | 01 | OD | 1D 00

01 |00 |OD|D1|10|1D|D1| 01
10 |01 |D1|1D |11 |DO|1D| 10
voy.| 11 | 10| Do | D1 |00 yp1|D1| 11

u 00 01 11 10 u 00 01 11 10
0 ‘1 D| D 1‘ 0 ‘D 1 1 D‘
1 ‘1 DD 1‘ 1 ‘D 1 1 D‘

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-16

Excitation table and K-maps

Flip-flop inputs

P::ngt u=0 u=1 Output
ZlZO

Ya¥a | Ya¥ | Ky 1YY [2K 3K
1 2 1 2 1
00 |11 [1D | 1D |01 |OD | 1D | 00

01 |00 |OD|D1|10|1D|D1| O1
10 |01 |D1|1D |11 |DO|1D| 10
vy, 11 |10 | D0 | D1 |00 yp1|D1| 11

G\ 00 01 11 10 G\ 00 01 11 10
o[2T0[ob] o[oo]ox]
1lo |1 |D|D 1|p|bD]| 1] o

Jo =(y,0u)’ Ko=(y,®u)’

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 28-17

Circuit diagram (JK flip-flop)

Vce !

Vce 4 a Z,
o

U :)DC ; Q Z,
_KCLRN

clock

reset

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-18

Lecture Six

1011
Moore

RECORDED WITH = Prof Nehal N Shah Sequence Detector using FSM
SCREENCAST 'Ko JlY . r)Assodate Prof, ECED, SCET in Verilog HDL

11011 Mealy

| r'i"- B
l:n'-::nl .-"f “n._l 1/0 ,./— m‘*., 10
o hose) = s =
- ! * -
P e it
| o0
i 1
0r1

110 Detector
Mealy

110

110 Detector

Moore

Construct a sequence detector for the sequence 101
using both mealy state machine and moore state
machine

Moore state require to four states stO,st1,st2,st3 to detect the 101
sequence.

Mealy state machine require only three states stO,st1,st2 to detect the
101 sequence.

wo 170 171

10

STATE Diagram
1) Dexan o stade di +Ha {Lof Seqmemce. ¢t i3
i L AL L

0/0

0/0

www.ylsiverify.com

1010 Overlapping Mealy Sequence Detector

1101 Detector Ty

= Moile that thee 1 anc from stake 1o state O implhas
that Stshe O measns o oF e 172 hava

raR e rarrrerd,

(0 i

7% N PN

{ a - b s

"'&___/‘) E}»._.fxll

~__1/0
resnesote e stte gt
IN=0 IN=1 IN=0 IN=1

q Q Q Q Q
b 0 1

b B b 1 0

Present State

1

IN

IN=0

1

IN

IN=0

Qlo
O o «
g < -
g o «
o o -

Tc QO

IN O
IN 1

Q=1IN+q

IN O
IN 1

Z=IN XOR q

rst_n

rst_n

Current State Input Next State Outputs

A B | Anext Bnext Y

0 0 0 0 0 0
............... DD 1 i 1 D
............... [}1 = D D 1
............... 01 1 1 D 1
................ 1 D - : D D
................ 1 D 1 1 D D
................ 1 1 = >){){
................ 1 1 1 %){){

Current State Input Mext State Outputs Flip Flop Inputs
A B | Anext Brext Y Da De
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0
1 1 0 X A A A A
1 1 1 X X X X X

X

0

Q GJ‘]E‘H J K

Flip Flop Inputs

Output

b

Next State

Anext

Brnext

Input

Current State

Bl

DA

A 00 01 11 10
0 0 0 1 0
1 0 1 X X

DB

A 2% 00 01 11 10
0 0 1 0 0
1 0 0 X X

Dy =A-1+B-1 = (A+B)-/

Dg=A-B-I

JA

2 00 01 11 10
0 0 0 1 0
1 X X X X

KA

& 00 01 11 10
0 X X X X
1 1 0 X X

JB

Bl 00 01 11 10
0 0 1 X X
1 0 0 X X

.l

-B

Ja=B
y

fA:E-!

B

Kg =

R1
10k

SET

CLK ~Q
RESET

SET

CLK ~0
RESET

R1
10kQ2

RESET

SET
D 7
CLK
K ~(1
RESET
I
SET
> 7
CLK
K ~0

Home Work

Solve previous question in other form

Present State Next State
1=0

A B

Clock t1 t7 t10
Cycle
W 0 1 O 1 1 0 1 1 1 0 1

. 0 o0 o0 o0 1 o0 o 1 1 o0 o

Present State Nextstate _______|output

W=0
A A B 0 0
B A B 0 1

=0
y Y Y Z Z

0 1 0 0
1 0 1 0 1

clock

U

Reset

State Machine Design Procedure

1. Build state/output table (or state diagram) from word
description using state names.

2. Minimize number of states (optional).

3. State Assignment: Choose state variables and assign bit
combinations to named states.

4. Build transition/output table from state/output table (or state
diagram) by substituting state variable combinations instead
of state names.

5. Choose flip-flop type (D, J-K, etc.)

6. Build excitation table for flip-flop inputs from transition table.

7. Derive excitation equations from excitation table.

8. Derive output equations from transition/output table.

9. Draw logic diagram with excitation logic, output logic, and
state memory elements.

EECC341 - Shaaban |

l‘l luﬂ l(\\lnlchDOl Z-6-2002

Lecture Seven

Finite State Machines

= ITwo types of sequential circuits (or finite state
machines)

» Mealy machine

» Output is function of present state and present mnput

1 Moore machine

« Owutput is function of present state only

Moore Circuit

———'—"—-“-—"_——-‘_“"_———"'ﬂ

Mealy Circuit

a) lts output is a function of present state
only.

b) Input changes does not affect the
output,

¢) Moore circuit requires more number of
states for implementing same function.

a) lts output is a function of present state
as well as present input,

b) Input changes may affect the output of
the circuit.

¢) It requires less number of states for
implementing same function.

D e —— e e e e

Table 313

Example:-
State machine design 110 Mealy?

0/0

0/

110 Detector Mealy

Present State Next State
E=0 E=1

SO SO S1
S1 SO S2
S2 SO S2

Present State Next State

Y2 1 E=1 E

Y2 Y1 Z
0o 0 0 O 0 1 0 0
0o 1 0 0 1 0 0 0
1 0 0 0 1 0 1 0
1 1 d d d d d d

Y2Y1 Y2Y1 y2y1 Y2Y1 Y2Y1 Y2yl Y2yl VY2Y1
00 01 11 10 o0 01 11 10

EO
E 1

Y1=EY1+EY2 Y2 =EY2Y1

Y2Y1 y2y1 Y2yl Y2V1
00 01 11 10

7 oy
= O

Home Work
Draw circuit Diagram

0 110 Detector

Moore

Present State Next State
E=0 E=1

SO SO S1 0
S1 SO S2 0
S2 S3 S2 0
S3 SO S1 1

Present State Next State

Y2 Y1 E=0
Y2 Y1

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 1 1 1 0 0
1 1 0 0 0 1 1

Y2Y1Y2Y1 Y2Y1 Y2Y1 Y2Y1 Y2v1 VY2Y1 vy2y1
00 01 11 10 00 01 11 10

EO
E1

Y1 =EY2Y1+EY2 Y1+ EY2Y1 Y2 =EY2Y1+ Y2Y1

Home Work 7 =Y2Y1
Draw circuit Diagram

Analyze the circuit below to obtain its state diagram?

-

X— ’D I |

$ (A |

K, ¥4

] .:JZE .'I":-
@

. b

(-}
B
(o]
o
- - - 0000«

Q.. =JQ,’+ K'Q,

—_—

—*O—‘O—‘O-‘OP

Qn+1

O & ifaater] OO 7=

Fig3. Charactenstic equation of JK flip flop

Solution:-
Y=0=qk+q]
Ja = JZX

Ky =Yy, o
Yi=V1 Ja + Y1ka
Yi=y1 . y2. X + 1>
B — X_

KB — X

Y=y, .Jg + y2kp
2=y, X +y2X
Z=Y1.Y7

Prese
State
Y1Y2

Next

Statex= 0 X=1
"y,

00

01

11

10

Y,

Present
State
Y1Y2 00

01

11

10

Next

State
X=0 X=1

Y]_ YZ Yl YZ Z

State Machine Analysis Example

Analyze the state machine:
1 Input (or excitation) equations:

DO = Q1°. X

D__TD D @ a1t DI —Q1.x+ QO0.x
—— :
s,
vy
c

2 <Characteristic equations:
QO0* = DO

Q1* = D1
Q Qo Find State equations:

Vo

Q0¥ — Q1. x
P Q1*=Q1.x+ Q0 .x

D I—D— ¥ 3 Owutput equation:

>o ¥y —(Q0 + Q1).x'

This is a Mealyv Machine since output= G({current state, input)

EECC341 - Shaaban |

#2 Lec# 15 "Winter 2001 2-5-2002

State Machine Analysis

From the state equation and output equation, construct the state
transition — output table.

State Equation 0. 0, |x=0 x=1

QW=0, X

Q1 = Q; x+Qp X
Output Equation
y=(Q, +0Q;).%

Q1 Qo y Q1 Qo ¥y
0 00 0 10

= O O
R O = O

O 01 110
O 01 100
O 01 1 0O

Lecture eight

D Flip-Flop

Present State __ Neasae | Ouput
X=0 X=1 X=0 X=1

A B AB AB Y Y
0 0 00 10 0 1
0 1 11 00 0 0
1 0 10 01 1 0
1 1 00 10 1 0

D Flip-Flop

Design using D flip-flop
AB AB AB gB AB %B AB AB
1 11

DA=XAB+XA B+X AB + XAB DB =X AB+ XAB

AB AB AB yB
00 01 11 10

Y = XA +X AB

T Flip-Flop

Present state mm Flip-flop Inputs

B

TA

T Flip-Flop

AB AB AB AB

<

TA=XB+XB

Y as previous case
in D flip-flop

>

TB =XA+ XB+ AB

RS Flip-Flop

Function Table Excitation Table
S R | Qait Qn | Quaa| S R
0 0 Qn ol oo | d
0 1 0

0 1 1 0
1 0 1

1 0 0 1
1 1 X

SR Flip-Flop

RS Flip-Flop

Outputl _
Y

(4]
)
=
=8 ™
O -
£
o
()
—
S
Li.
<
e

X

Circuit Excitation Table

RS Flip-Flop

AB AB AB 4B

R, = XAB + XAB

AB AB AB 4B
>l-
X

Ry = AB + XB

AB AB AB yAB

Sy =XAB + XAB

AB AB AB 4B

SB = XAE

Home Work

Design using JK flip-flop?

1/1

Stanto dingram

2. State table

State Table
Next State Oustpaat

PFraosont State x w= O x = 1 x = O x = 1

o r & o (]

L2 < « o O

< = ' o (&)

ol I 4% o 1

< o > o 1

S 7 o]

= < - 7 o 1

3. Reducing the state table:
e e=g (remove g and keep ¢)
e d=1 (remove [and keep d)

Reducing the State Table

Next State Output
Present State xwmw 0 x=1 x=0 x =1
a a b 0 0
b < d 4]]
< a d o 0
d ¢ S o 1
- a f: o 1
o e v (4} 1
Reduced State Table
Next State Output
Present State x =0 x =1 xX =0 xw= 1

AN
aagng
Laaar
coCCO
~=0Co

o/0 o/0
1/0
o/0
o/0 1/1 | 1/0 -
1/0
1/1

"State diagram after reduction'

Lecture Nine

State Reduction
* Inspection
* Implication Table

Example (1)

Reduce the number of states for table shown below using Implication
table method?

Next State

Present State ~=0 | x=1 Output
So S1 So 1
S1 Sa Sk 1
So Sk Sy 0
Sa Sy Sg 1
Sa Sk So 0
Ss Sa Sa 0
Sg Sk Sg 0

Present State xN=ez){t Siaie Output
So Sq So 1
S Sa Ss 1
So Ss S4 0O
Sa Sq Se 1
¢ Sa Ss So O
Ss Sy Sa O
83—81 ¢ Sg S5 S6 O
S5-.55
S1-51 | S1-53
S-S5 | S-S5 >< ‘
S5-S55
> | > o] v
54—85 84—85
>< >< S3-54 >< S'3-S55 ‘
85—85 85—85 85‘84
| > P > o g | o
So Sl 82 83 84 85

S3-51

S5-55 ¢

> > o

oo | oe || ¥

S| > | T[>y

S| >R >

> > ga > ss 55
So ST Sy S3 S Sk

|
oo >

> > gre [><| o

S | > >

> > g | < s | <<
So Sq S5 S3 Sy Sk

Next State

Present State w0 x=1 Output
S, 81 Sa 1
81 Sa S5 1
S5 Ss S5 0
Sx S5 Sy 0

Example (2)

Inspection Method

Present State Next State Present Output
X=0 X=1
a d (0
b d c 0
c d a 0
d d C 1

Present state Next Sstate
X=0 X=1
a d C 0
C d a 0
d d C 1 Present State Next State
X=0 X=1

a d a 0
d d a

Example (3) Inspection Method

Present State Next State

X=0 X=1

O O W >
O O W™ W
> m > 0O
O r O O
- O B B

Present State Next State
X=0 X=1

A B C 0 1
B A 0 1
C B B 1 0

Present State Next State Output
x=0 | x=1
So S So 1
N1 Sa Sk 1
So Ss S 4 0
Sa S Se 1
NS4 Sk N 0
S5 Sy Sa 0
Sg Sk Sg 0

S3-51

S5-55 ¢

> > o

oo | oe || ¥

S| > | T[>y

S| >R >

> > ga > ss 55
So ST Sy S3 S Sk

|
oo >

> > gre [><| o

S | > >

> > g | < s | <<
So Sq S5 S3 Sy Sk

x:0,81%~833,nd80%~81
X:1,81%S5 alldSO—)Sg

S3-57 ¢
S5-.55
> >y
S:-57 | §¢-8
5055 | Se8o | | ¥
S
>N > g) | ¥
- S4-S
>N > guss | 2| g | ¥
_ S:=-S
S| |G < (5’ 5% oo
So 81 82 83 85

S2=54

Next State

Present State w0 x=1 Output
S, 81 Sa 1
81 Sa S5 1
S5 Ss S5 0
Sx S5 Sy 0

Present | Next State | Present Output
State | X=0 X=1| X=0 X=l]
a ¢ f 0 0
b d e 0 0
c Ba g 0 0
d b g 0 0
e ¢ b 0]

f f a 0 1
g ¢ 2 0]

- < £ “ -

Figure 2 State Table Reduction by Row Matching

e-f

fe | 29

?_-; e-g a-b

X X X X

X X X X a-b

X Ilxlx|=x=m £ &
a b c d e f

Figure 3 Implication Chart (First Pass)

o-f
*‘§~ - \‘”.“'
’ '\ o.
iy A At SN |
L" ‘ L& :*:\ :’.
“e” a-b
l'?‘f ~ ” -

<

Present | Next Siate
Srate X=0 X=]|
“ 9 |}
. A ®
« v A
- L o

i

X

X

X
d

Flgure 4 Aoy Second and Thied Pass

Present COutput
N X=}
0O 0
0O 0
0 |
O 1

Tigure & Nionl Reduced Talbile

o N

Present Next State Present
State X =0 1 Output

a d c O

b r 3 O

c e d 1

d a e O

e c a 1

5 e b 1

g b h O

h c g 1

a—d

Original State Table

Second Pass

(XK
XXX
KX

e

Next State

2K
>3 ><
I g

Output peduced

Present
State X =0 1
a a c (8]
b ¥ h (8]
c c a 1
I S b 1
g b n (8
h c g 1

State Table
-rows d, e
eliminated

Present State Next State
X=0

A A B 0 0
B C D 0 0
C A D 0 0
D E F 0 1
—EFE A F 0 1 >
F G F 0 1
—G___ A F 0 1 I
E=G, delet G

Substitute each G by E
Then D=F delet F
Substitute each F by D

Present State Next State
X=0

A A B 0 0
B C D 0 0
C A D 0 0
D E D 0 1
E A D 0 1

