
Programmable Logic Device

PLD

PLD
• An IC that contains large numbers of gates, flip-flops, etc. that can be

configured by the user to perform different functions is called a
Programmable Logic Device (PLD). It permits elaborate digital logic
designs to be implemented by the user on a single device. The
internal logic gates and/or connections of PLDs can be
changed/configured by a programming process. On the other hand,
Programmable Logic Devices (PLDs) are the components which do not
have a specific function associated with them.

2

3

4

5

6

7

8

9

10

SPLD

11

12

13

Programmable
Logic Device

14

Programmable Logic Array

15

Programmable Logic Array

16

Programmable Logic Array

17

Programmable Logic Array

Programmable
Logic Array

18

Programmable Logic Array

19

Programmable Array Logic

PALs use an OR gate array with fixed logic while an AND gate array
which can be programmed as per the requirement of the user. As a
result, these devices express the output as a combination of inputs in
sum-of-products form.

20

Programmable Array Logic

21

Programmable Array Logic

22

Programmable Logic Array

Programmable
Logic Array

23

Programmable Logic Array

24

25

Generic Logic Array

Generic Logic Array (GLA)

• These devices had their properties similar to those of PALs in addition
to which they were electrically erasable and re-programmable. This
important feature proved to be meritorious as it considerably eased
the prototype design which in turn reduced the time to market.

26

Programmable Read-Only Memory

27

Programmable Read-Only Memory

PROM

28

Programmable Read-Only Memory

PROM

29

30

31

Programmable Read-Only Memory

32

33

Complex Programmable Logic Device

34

Complex Programmable Logic Device

• Complex Programmable Logic Device (CPLD)

• CPLDs are denser than PALs and comprise of a large number of programmable

logical elements. The interconnection between these macro cells is to be

established by the user through the interconnecting network.

• Here sum-of-product establishing logical elements are combined together to

form structures in order to reduce the number of input-output (IO) pins.

• This facilitates the implementation of more complex logic design with slightly

worse propagation time when compared to that of PALs.

• These offer predictable timing characteristics making them most suitable for

critical control applications with high performance.

• CPLDs are preferred to implement combinational logic based designs.

35

Complex Programmable Logic Device

36

Complex Programmable Logic Device

37

38

Complex Programmable Logic Device

39

Field Programmable Gate Array

40

Field Programmable Gate Array

41

Field Programmable Gate Array

42

Field Programmable Gate Array

43

Field Programmable Gate Array

44

Field Programmable Gate Array

45

Field Programmable Gate Array

46

Field Programmable Gate Array

47

Field Programmable Gate Array

48

Field Programmable Gate Array

49

Field Programmable Gate Array

50

Field Programmable Gate Array

51

52

53

FPGA

An afield-programmable gate array (FPGA) is a logic device
that contains a two-dimensional array of generic logic cells
and programmable switches. The conceptual structure of an
FPGA device is shown in Figure .1. A logic cell can be
configured (i.e., programmed) to perform a simple function,
and a programmable switch can be customized to provide
interconnections among the logic cells.

A custom design can be implemented by specifying the
function of each logic cell and selectively setting the
connection of each programmable switch. Once the design
and synthesis are completed, we can use a simple adaptor
cable to download the desired logic cell and switch
configuration to the FPGA device and obtain the custom circuit.
Since this process can be done "in the field" rather than
"in a fabrication facility (fab)," the device is known as
field programmable.

Figure -1-

LUT based logic cell

A logic cell usually contains a small configurable
combinational circuit with a D-type flip-flop (D FF). The most
common method to implement a configurable combinational
circuit is a look-up table (LUT). An n-input LUT can be
considered as a small 2^n memory. By properly writing the
memory content, we can use an LUT to implement any n-input
combinational function. The conceptual diagram of a three
input LUT-based logic cell is shown in Figure

2.(a). An example of a three-input LUT implementation of a
xor b xor c is shown in Figure 2.(b). Note that the output of the
LUT can be used directly or stored to the D FF. The latter can
be used to implement sequential circuits.

LUT

d q

a

b

c

clk

q

y

Figure 2-a Conceptual Diagram

YA b c

00 0 0

10 0 1

10 1 0

00 1 1

11 0 0

01 0 1

01 1 0

11 1 1

Figure 2-b Example Table
Figure 2- Three input LUT based logic circuit

1

Dr. D. J. Jackson Lecture 3-1Electrical & Computer Engineering

ECE380 Digital Logic

Introduction to Logic Circuits:
Boolean algebra

Dr. D. J. Jackson Lecture 3-2Electrical & Computer Engineering

Axioms of Boolean algebra

• Boolean algebra: based
on a set of rules derived
from a small number of
basic assumptions
(axioms)

• 1a 0·0=0
• 1b 1+1=1
• 2a 1·1=1
• 2b 0+0=0

• 3a 0·1=1·0=0
• 3b 1+0=0+1=1
• 4a If x=0 then x’=1
• 4b If x=1 then x’=0

2

Dr. D. J. Jackson Lecture 3-3Electrical & Computer Engineering

Single-Variable theorems
• From the axioms are derived

some rules for dealing with
single variables

• 5a x·0=0
• 5b x+1=1
• 6a x·1=x
• 6b x+0=x
• 7a x·x=x
• 7b x+x=x
• 8a x·x’=0
• 8b x+x’=1
• 9 x’’=x

• Single-variable
theorems can be proven
by perfect induction

• Substitute the values
x=0 and x=1 into the
expressions and verify
using the basic axioms

Dr. D. J. Jackson Lecture 3-4Electrical & Computer Engineering

Duality

• Axioms and single-variable theorems are
expressed in pairs
– Reflects the importance of duality

• Given any logic expression, its dual is formed
by replacing all + with ·, and vice versa and
replacing all 0s with 1s and vice versa

– f(a,b)=a+b dual of f(a,b)=a·b
– f(x)=x+0 dual of f(x)=x·1

• The dual of any true statement is also true

3

Dr. D. J. Jackson Lecture 3-5Electrical & Computer Engineering

Two & three variable properties

• 10a. x·y=y·x Commutative
• 10b. x+y=y+x

• 11a. x·(y·z)=(x·y)·z Associative
• 11b. x+(y+z)=(x+y)+z

• 12a. x·(y+z)=x·y+x·z Distributive
• 12b. x+y·z=(x+y)·(x+z)

• 13a. x+x·y=x Absorption
• 13b. x·(x+y)=x

Dr. D. J. Jackson Lecture 3-6Electrical & Computer Engineering

Two & three variable properties

• 14a. x·y+x·y’=x Combining
• 14b. (x+y)·(x+y’)=x

• 15a. (x·y)’=x’+y’ DeMorgan’s
• 15b. (x+y)’=x’·y’ Theorem

• 16a. x+x’·y=x+y
• 16b. x·(x’+y)=x·y

4

Dr. D. J. Jackson Lecture 3-7Electrical & Computer Engineering

Induction proof of x+x’·y=x+y

• Use perfect induction to prove x+x’·y=x+y

x y x’y x+x’y x+y

0 0 0 0 0

0 1 1 1 1

1 0 0 1 1

1 1 0 1 1

equivalent

Dr. D. J. Jackson Lecture 3-8Electrical & Computer Engineering

Perfect induction example

• Use perfect induction to prove (xy)’=x’+y’

x y xy (xy)’ x’ y’ x’+y’

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

equivalent

5

Dr. D. J. Jackson Lecture 3-9Electrical & Computer Engineering

Proof (algebraic manipulation)

• Prove
– (X+A)(X’+A)(A+C)(A+D)X = AX
– (X+A)(X’+A)(A+C)(A+D)X
– (X+A)(X’+A)(A+CD)X (using 12b)
– (X+A)(X’+A)(A+CD)X
– (A)(A+CD)X (using 14b)
– (A)(A+CD)X
– AX (using 13b)

Dr. D. J. Jackson Lecture 3-10Electrical & Computer Engineering

Algebraic manipulation

• Algebraic manipulation can be used to
simplify Boolean expressions
– Simpler expression => simpler logic circuit

• Not practical to deal with complex
expressions in this way

• However, the theorems & properties provide
the basis for automating the synthesis of
logic circuits in CAD tools
– To understand the CAD tools the designer should

be aware of the fundamental concepts

6

Dr. D. J. Jackson Lecture 3-11Electrical & Computer Engineering

Venn diagrams

• Venn diagram: graphical illustration of
various operations and relations in an algebra
of sets

• A set s is a collection of elements that are
members of s (for us this would be a
collection of Boolean variables and/or
constants)

• Elements of the set are represented by the
area enclosed by a contour (usually a circle)

Dr. D. J. Jackson Lecture 3-12Electrical & Computer Engineering

Venn diagrams

X’ X X’

(a) Constant 1 (b) Constant 0

(c) Variable X (d) X’

X

7

Dr. D. J. Jackson Lecture 3-13Electrical & Computer Engineering

Venn diagrams

X Y

Z
X

X Y X Y

(e) (f)

(g) (h)

XY X+Y

XY+Z XY’

Y

Dr. D. J. Jackson Lecture 3-14Electrical & Computer Engineering

Venn diagrams (x+y)’= x’y’

X Y

X YX

X Y

X YX’ Y’

XXX Y

(X+Y)’

X XXX Y

X’Y’

XDeMorgan’s
Theorem

Equivalent
Venn diagrams
imply equivalent
functions

8

Dr. D. J. Jackson Lecture 3-15Electrical & Computer Engineering

Notation and terminology

• Because of the similarity with arithmetic
addition and multiplication operations, the
OR and AND operations are often called the
logical sum and product operations

• The expression
– ABC+A’BD+ACE’
– Is a sum of three product terms

• The expression
– (A+B+C)(A’+B+D)(A+C+E’)
– Is a product of three sum terms

Dr. D. J. Jackson Lecture 3-16Electrical & Computer Engineering

Precedence of operations
• In the absence of parentheses, operations in a logical

expression are performed in the order
– NOT, AND, OR

• Thus in the expression AB+A’B’, the variables in the second
term are complemented before being ANDed together. That
term is then ORed with the ANDed combination of A and B (the
AB term)

9

Dr. D. J. Jackson Lecture 3-17Electrical & Computer Engineering

Precedence of operations

• Draw the circuit
diagrams for the
following

– f(a,b,c)=(a’+b)c

– f(a,b,c)=a’b+c

1

Dr. D. J. Jackson Lecture 21-1Electrical & Computer Engineering

ECE380 Digital Logic

Combinatorial Circuit Building
Blocks:

Multiplexers

Dr. D. J. Jackson Lecture 21-2Electrical & Computer Engineering

Multiplexers
• A multiplexer (MUX) circuit has

– A number of data inputs
– One (or more) select inputs
– One output

• It passes the signal value on one of its data inputs to
its output based on the value(s) of the select
signal(s)

0

1

s

x1

x2

f=x1s’+x2s

s f(s,x1,x2)
0 x1

1 x2

2

Dr. D. J. Jackson Lecture 21-3Electrical & Computer Engineering

Multiplexer implementations

x

y f

s

The preferred
implementation

Dr. D. J. Jackson Lecture 21-4Electrical & Computer Engineering

4-input multiplexer

• A 4-input multiplexer ‘selects’ one of four data inputs
to be output based on the values of 2 select lines

w0

w1

w2

w3

s0

s1

f

00

01

10

11

s1 s0 f
0 0 w0

0 1 w1

1 0 w2

1 1 w3

f=s1’s0’w0+s1’s0w1+s1s0’w2+s1s0w3

3

Dr. D. J. Jackson Lecture 21-5Electrical & Computer Engineering

Building a 4-input MUX

• A 4-input multiplexer can be constructed using 2-
input multiplexers

s0

0

1

w0

w1

0

1

w2

w3

0

1

s1

f

Dr. D. J. Jackson Lecture 21-6Electrical & Computer Engineering

MUX application (a 2x2 crossbar)
• A circuit with n inputs and k

outputs whose function is to
provide a capability to
connect any input to any
output is called a nxk
crossbar switch
– With 2 inputs and 2 outputs,

it is called a 2x2 crossbar
– Useful in applications where

it is necessary to connect
one set of wires to another
set of wires, where the
connection pattern changes
from time to time

– Telephone switching
networks are an example

x1

x2

y1

y2

s

0

1

s

x1

x2

0

1
y1

y2

4

Dr. D. J. Jackson Lecture 21-7Electrical & Computer Engineering

0/10/1

MUX application (prog. switch)

• In programmable devices (PLDs, CPLDs and FPGAs)
programmable switches connect wires inside the
device
– These can be implemented with multiplexers

i1

i2
f

An FPGA logic block
with programmable inputs

i1

i2

f

0/10/1

MUX implementation

storage
cell

Dr. D. J. Jackson Lecture 21-8Electrical & Computer Engineering

Logic functions using MUXs

• MUXs can be used to synthesize logic functions
– The LUT implementations use MUXs to select a (constant)

value from a look-up table
• Consider the XOR function

a b f
0 0 0
0 1 1
1 0 1
1 1 0

0

1

1

0

a
b

f

00

01

10

11

5

Dr. D. J. Jackson Lecture 21-9Electrical & Computer Engineering

Logic functions using MUXs

• The previous XOR solution is not particularly efficient

a b f
0 0 0
0 1 1
1 0 1
1 1 0

when a=0, f=b

when a=1, f=b’

a f
0 b
1 b’

0

1

a

b
f

Dr. D. J. Jackson Lecture 21-10Electrical & Computer Engineering

Logic functions using MUXs

• Implement the following with a 2-input MUX
and any additional logic gates

a b f
0 0 1
0 1 1
1 0 0
1 1 1

6

Dr. D. J. Jackson Lecture 21-11Electrical & Computer Engineering

Logic functions using MUXs

• A 3-input XOR can be implemented with two 2-input
MUXs

x y z f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

yz

(yz)’

z

f

0

1

y

0

1

x

Dr. D. J. Jackson Lecture 21-12Electrical & Computer Engineering

Logic functions using MUXs

• Implement the following with 2-input MUXs
and any additional logic gates

x y z f
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

7

Dr. D. J. Jackson Lecture 21-13Electrical & Computer Engineering

Shannon’s expansion theorem

• Any Boolean function f(w1,…,wn) can be
written in the form
f(w1,…,wn)=(w1)’  f(0,w2,…,wn)+(w1)  f(1,w2,…,wn)

• The expansion can be done using any of the
n variables

• If f(w1,w2,w3)= w1w2+w1w3+w2w3
– Expanding this in terms of w1 gives

f(w1,w2,w3)= w1(w2+w3)+(w1)’(w2w3)

f when w1=1 f when w1=0

Dr. D. J. Jackson Lecture 21-14Electrical & Computer Engineering

Shannon’s expansion example

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w 1 w 2 w 3 f

0
0
0
0
1
1
1
1

0
1

f w 1
w 2 w 3

w 2 w 3 +

f
w 3

w
1 w 2

8

Dr. D. J. Jackson Lecture 21-15Electrical & Computer Engineering

Shannon’s expansion example

x y z f
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

f=x’y’z’+x’y’z+x’yz+xy’z’+xy’z

choose x as the expansion variable

f=x’(y’z’+y’z+yz)+x(y’z’+y’z)
f=x’(y’+z)+x(y’)

f

x z

y

Dr. D. J. Jackson Lecture 21-16Electrical & Computer Engineering

Shannon’s expansion example

x y z f
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

f=x’y’z’+x’y’z+x’yz+xy’z’+xy’z

choose z as the expansion variable

Lecture Three

Shannon's Expansion Theorem

T11a:

1),...,2,1(1),...,2,0(),...,1(XXnXFXXnXFXnXF 

T11b:

]1),...,2,0([]1),...,2,1([),...,1(XXnXFXXnXFXnXF 

Shannon's Expansion Theorem

Let X1=0 in T11a

0),...,2,1(0),...,2,0(),...,1( XnXFXnXFXnXF

0),...,2,1(1),...,2,0(),...,1( XnXFXnXFXnXF
),...,2,0(),...,1(XnXFXnXF 

Let X1=1 in T11a

1),...,2,1(1),...,2,0(),...,1( XnXFXnXFXnXF

1),...,2,1(0),...,2,0(),...,1( XnXFXnXFXnXF

),...,2,1(),...,1(XnXFXnXF 

Shannon's Expansion Theorem

21),...,3,1,1(21),...,3,0,1(

21),...,3,1,0(21),...,3,0,0(),...,1(

XXXnXFXXXnXF

XXXnXFXXXnXFXnXF





213212211210 XXIXXIXXIXXI 

33221100 mImImImI 

i

k

mKi

n






12

0
)2,1(Where XXmm ii 

Example
Design a circuit using MUX to implement the following function by
applying Shannon's Expansion Theorem T11a with respect to A and B

C).A.BF(1,1,B.C).AF(1,0,

B.AC).F(0,1,B.AC).F(0,0, C)B,F(A,





0C0.0 C)F(0,0, 

CC1.0 C)F(0,1, 

1C0.1 C)F(1,0, 

1C1.1 C)F(1,1, 

EN

0

1

2

3 1 0

EN

 0

C

1

 1

 A B

F

4*1

MUX

CB.A C)B,F(A, 

Solution

Figure (1)

Analyzing a Multiplexer Design

i

k

mKiCBAF

n






12

0

),,(),(Where BAmm ii 

33221100 mImImImI 

321100 mCmmCm 

C.A.BB.1.AB.A.CB.A0. 

A.B.C).(B.ACB..A  CC

7542 mmmm 

)7,5,4,2(m

EN

0

1

2

3 1 0

EN

 0

C

1

 C

 A B

F

4*1

MUX

Figure (2)

Field Programmable Gate Array (FPGA)

• FPGAs are based on gate array technology, unlike the PROM
technology of early PLDs. These devices comprise configurable logic
blocks (CLBs) along with an interconnection matrix running in
between.

• FPGAs work based on the look-up tables (LUTs) and the flip-flops
that form a part of CLB. The user has to program the CLBs to perform
a certain logical function and then use the interconnection matrix to
connect one or more logic blocks together. Further, they comprise
input-output (I/O) ports facilitating the design both from the point of
programming as well as debugging.

• These devices are capable of implementing state-machine-based
sequential designs along with designs based on combinational logic.

• FPGAs are used to realize more complex designs when compared to
CPLDs due to their high density. Moreover, FPGAs offer the customer
the flexibility to design/re-design the logic even after being deployed
in the work field which gives them the name field-programmable.
However, FPGAs have larger propagation delays when compared to
CPLDs.

• All of these PLDs are programmable using device programs that
transfer the Boolean logic pattern onto the programmable device

Programming Technologies

• There are a number of programming technologies that have been
used for reconfigurable architectures. Each of these technologies has
different characteristics which in turn have a significant effect on the
programmable architecture. Some of the well-known technologies
include static memory, flash, and anti-fuse.

SRAM-Based Programming Technology
Static memory cells are the basic cells used for SRAM-based FPGAs. Most commercial

vendors use static memory (SRAM) based programming technology

in their devices. These devices use static memory cells which are divided throughout

the FPGA to provide configurability. An example of such a memory cell is shown

in Fig.3 . In an SRAM-based FPGA, SRAM cells are mainly used for the following

purposes:

1. To program the routing interconnect of FPGAs which are generally steered by small
multiplexors.

2. To program Configurable Logic Blocks (CLBs) that are used to implement logic functions.

• SRAM-based programming technology has become the dominant
approach for FPGAs because of its re-programmability and the use of
standard CMOS process technology therefore leading to increased
integration, higher speed and lower dynamic power consumption of
new process with smaller geometry. There are however a number of
drawbacks associated with SRAM-based programming technology. For
example an SRAM cell requires 6 transistors which makes the use of
this technology costly in terms of area compared to other
programming technologies. Further SRAM cells are volatile in nature
and external devices are required to permanently store the
configuration data. These external devices add to the cost and area
overhead of SRAM-based FPGAs.

Figure -3-

Flash Programming Technology

One alternative to the SRAM-based programming technology is the use
of flash or EEPROM-based programming technology. Flash-based
programming technology

offers several advantages. For example, this programming technology is
nonvolatile in nature. Flash-based programming technology is also
more area-efficient than SRAM-based programming technology. Flash-
based programming technology has its own disadvantages, flash-based
technology uses non-standard CMOS processes.

Anti-fuse Programming Technology
An alternative to SRAM and flash-based technologies is anti-fuse
programming technology. The primary advantage of anti-fuse programming
technology is its low area. Also, this technology has lower resistance and
parasitic capacitance than the other two.
Programming Technologies
• programming technologies. Further, this technology is non-volatile in

nature. There are however significant disadvantages associated with this
programming technology.

• For example, this technology does not make use of the standard CMOS
process. Also, anti-fuse programming technology-based devices can not be
reprogrammed.

Figure -4-

a

Logic 1

y = !a & b&

b

Pull-up resistors

Programmed

antifuses

NOT

NOT

AND

a

F
at

Logic 1

y = a & !b&

b

F
bf

Pull-up resistors

NOT

NOT

AND

Anti-fuse links Fuse links

SRAM

Volatile memory –

SRAM programmable Figure -5-

Classifying Devices

Device can be classed based on their level of programmability

One-Time Programmable: devices can be programmed only once; it's
contents can not be changed. While typically these devices are fuse or
anti-fuse-based, they can also be low-cost EPROM devices.

Re-programmable: These devices can have their configuration loaded
more than once. SRAM-based and Flash-based devices may be reloaded
without restriction.

Lecture Four

Complex Programmable Logic Devices (CPLDs)

Complex Programmable Logic Devices (CPLDs) integrate multiple SPLDs into
a single chip. A typical CPLD provides a logic capacity equivalent to about 50
single SPLDs. Altera, the world’s second and largest manufacturer −
presently, the largest manufacturer is Xilinx − of programmable
semiconductors, introduced the MAX 5000, MAX 7000, and MAX 9000
series of CPLDs. MAX Wired – AND gates OR gate Flip Flop

5000 is based on older technology, the MAX 7000 family is a
high−performance PLD and it is fabricated with advanced CMOS technology
designed with state-of-the-art logic capacity and speed performance, and
MAX 9000 is very similar to the MAX 7000 except that it has higher logic
capacity.

CPLD

Detail of CPLD

A Complex Programmable Logic Device (CPLD) is a programmable logic
device and can be programmed by using VHDL. CPLDs are based on EPROM
or EEPROM technology. CPLDs have extended density than the SPLDs. The
concept of CPLDs is to have a few macrocells on a single chip with simple
logic paths. CPLDs are classified depending on the architecture which gives
rise to high speed, detailed timing, and simple software flow. The basic CPLD
consists of the configurable logic block (CLB) which consists of AND gate
arrays and interconnects. The logic blocks are programmable AND, fixed OR
devices. PALs and GALs are available only in small sizes, equivalent to a few
hundred logic gates. CPLD is an arrangement of multiple SPLD-like blocks on
a single chip. CPLD consists of multiple circuit blocks in the chip. The circuit
block in CPLD are the same as that of PLA or PAL blocks.

The figure below shows an example of a CPLD. This CPLD has four PAL
blocks which are connected interconnection wires. The PAL block is also
connected to a sub-circuit known as an I/O block. The I/O block is
connected to a number of input and output pins. The PAL block
consists of macrocells. The macrocell consists of flip-flop, a
multiplexer, and a tri-state buffer. The flip-flop is used to store the
output value produced by the OR gate. The tri-state buffer acts as a
switch. In the function block, the AND array gets inputs from the I/O
blocks and other function blocks. The product terms are given to fixed
OR gates. The outputs of the multiplex or are then sent through a
clocked flip-flop. The function blocks are designed similarly to PAL
architectures.

The I/O block is used to drive signals to the pins of the CPLD device. The
CPLD interconnect is a programmable switch matrix.

Altera-Flash-Logic-
CPLD

Macrocells

Macrocells

FPGA

Normally FPGAs comprise of:

• Programmable logic blocks which implement logic functions.

• Programmable routing that connects these logic functions.

• I/O blocks that are connected to logic blocks through routing
interconnect and that make off-chip connections.

A generalized example of an FPGA is shown in the Figure below where configurable
logic blocks (CLBs) are arranged in a two dimensional grid and are interconnected
by programmable routing resources. I/O blocks are arranged at the periphery of
the grid and they are also connected to the programmable routing interconnect.
The “programmable/reconfigurable” term in FPGAs indicates their ability to
implement a new function on the chip after its fabrication is complete. The
configurability programmability of an FPGA is based on an underlying
programming technology, which can cause a change in the behavior of a pre-
fabricated chip after its fabrication.

Overview of FPGA Architecture

Macro cell Most FPGA devices also embed certain macro cells or macro
blocks. These are designed and fabricated at the transistor level, and
their functionalities complement the general logic cells. Commonly
used macro cells include memory blocks, combinational

multipliers, clock management circuits, and I/O interface circuits.
Advanced FPGA devices may even contain one or more prefabricated
processor cores.

Overview of the Xilinx Spartan3 devices

Xilinx Spartan-3 family FPGA devices. Based on the ratio between the number

of logic cells and the I/O counts, the family is further divided into several subfamilies.

Our discussion applies to all the subfamilies.

Logic cell, slice, and CLB The most basic element of the Spartan-3 device is a logic
cell (LC), which contains a four-input LUT and a D FF, similar to that in Figure below.

In addition, a logic cell contains a carry circuit, which is used to implement arithmetic

functions, and a multiplexing circuit, which is used to implement wide multiplexers. The

LUT can also be configured as a 16-by- 1 static random access memory (SRAM) or a 16-bit

shift register.

Conceptual Diagram

To increase flexibility and improve performance, eight logic cells are
combined with a special internal routing structure. In Xilinx terms, two
logic cells are grouped to form a slice, and four slices are grouped to
form a configurable logic block (CLB).

Logic cell

A Slice containing two logic cells

A CLB containing four slices (the number of slices depend on
the FPGA family)

Example (1):-

Implement the following using 4X1 multiplexer and any any additional
logic gates, using w1w2 as a selector?

fW1 W2 W3

00 0 0

00 0 1

00 1 0

10 1 1

01 0 0

11 0 1

01 1 0

01 1 1

fW1 W2

00 0

W30 1

W31 0

01 1

W1
W2

W3

0

0

f

Implementation of solution of
example -1-

Example (2):-

Implement the following using 2X1 multiplexer?

YA B C D

00 0 0 0

00 0 0 1

00 0 1 0

10 0 1 1

00 1 0 0

1

10 1 1 0

00 1 1 1

01 0 0 0

11 0 0 1

11 0 1 0

01 0 1 1

11 1 0 0

01 1 0 1

01 1 1 0

01 1 1 1

0 1 0 1

LooK UP-table

Ya b c

00 0 0

00 0 1

10 1 0

00 1 1
1 0 0 1

11 0 1

11 1 0

01 1 1

0 1 0

f=1

Example (3):-
Implement the following using 2X1 multiplexer?

1

Dr. D. J. Jackson Lecture 27-1Electrical & Computer Engineering

ECE380 Digital Logic

Synchronous Sequential Circuits:
State Diagrams, State Tables

Dr. D. J. Jackson Lecture 27-2Electrical & Computer Engineering

Synchronous sequential circuits
• Circuits where a clock signal is used to control

operation are called synchronous sequential
circuits
– The term active clock edge refers to the clock edge that

causes a change in state (positive or negative)
• Realized using combinational logic and one or more

flip-flops
• Two models for synchronous sequential circuits

– Moore model: circuit outputs depend only on the present
state of the circuit

– Mealy model: circuit outputs depend on the present state
of the circuit and the primary inputs

• Sequential circuits are also called finite state
machines (FSM)

2

Dr. D. J. Jackson Lecture 27-3Electrical & Computer Engineering

Moore versus Mealy machines

w Combinational
circuit Flip-flops Combinational

circuitQ f
clock

Mealy state machine

w Combinational
circuit Flip-flops Combinational

circuitQ f
clock

Moore state machine

Dr. D. J. Jackson Lecture 27-4Electrical & Computer Engineering

Basic design steps

• We will introduce techniques for sequential
circuit design via a simple example

• Design a circuit that meets the following
specifications:
– The circuit has one input, w, and one output, z
– All changes in the circuit occur on the positive

edge of the clock signal
– Output z=1 if the input w was 1 during the two

immediately preceding clock cycles
• From this specification it is obvious that z

cannot depend solely of the value of w

3

Dr. D. J. Jackson Lecture 27-5Electrical & Computer Engineering

Sequences of signals

• The example input and output sequence
below aides in the description of the circuit

Clock
cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w 0 1 0 1 1 0 1 1 1 0 1

z 0 0 0 0 0 1 0 0 1 1 0

Dr. D. J. Jackson Lecture 27-6Electrical & Computer Engineering

State diagram

• The first step in designing an FSM is
determining how many states are needed
and which transitions are possible from one
state to another
– No preset procedure for this
– The designer must think about what the circuit is

to accomplish
• A good beginning is to define a reset state

that the circuit should enter when power is
applied or when a reset signal is received

4

Dr. D. J. Jackson Lecture 27-7Electrical & Computer Engineering

State diagram

• For our example, assume the starting state is
called A

• As long as w=0, the circuit should do nothing
and z=0

A/z=0w=0

reset

Dr. D. J. Jackson Lecture 27-8Electrical & Computer Engineering

State diagram

• When w=1, the circuit should ‘remember’ this
by transitioning to a new state (B)

• This transition should occur at the next
positive edge of the clock signal

A/z=0w=0

reset

B/z=0

w=1

5

Dr. D. J. Jackson Lecture 27-9Electrical & Computer Engineering

State diagram

• When in state B and w=1, the circuit should
‘remember’ this by transitioning to a new
state (C)

A/z=0w=0

reset

B/z=0

w=1

C/z=1 w=1

Dr. D. J. Jackson Lecture 27-10Electrical & Computer Engineering

Complete state diagram

A/z=0w=0

reset

B/z=0
w=1

C/z=1

w=1w=0
w=0

w=1
Moore model state diagram

6

Dr. D. J. Jackson Lecture 27-11Electrical & Computer Engineering

State table

• A state diagram describes circuit functionality, but
does not describe circuit implementation

• Translation to a tabular form is necessary
• The state table should contain

– All transitions from each present state to each next state
for all valuations of the input signals

– The output, z, is specified with respect to the present state

Present
state

Next state Output
zw=0 w=1

A A B 0
B A C 0
C A C 1

Dr. D. J. Jackson Lecture 27-12Electrical & Computer Engineering

State assignment

• The states are defined in terms of variables
(A, B, and C)

• Each state is represented by a particular
valuation of state variables

• Each state variable is implemented with a
flip-flop

• Since three states have to be realized, it is
sufficient to use two state variables
– Use y2y1 for the present state (present state

variables)
– Use Y2Y1 for the next state (next state variables)

7

Dr. D. J. Jackson Lecture 27-13Electrical & Computer Engineering

State-assigned table

Present
state
y2y1

Next state
Output

zw=0 w=1

Y2Y1 Y2Y1

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

Note the addition of the y2y1=11 state. Although it is
not used, it is needed for completeness.

Dr. D. J. Jackson Lecture 27-14Electrical & Computer Engineering

Next-state and output maps

• K-maps are constructed from the state table
for:
– Circuit outputs (z in this case)
– Inputs for the flip-flops (next-state K-maps)

• Constructing the next-state maps depends on
the type of flip-flop (D, T, JK) used for the
implementation
– D is the most straightforward: next-state maps

are constructed directly from the state table since
• Q(t+1)=Q+=D

– T and JK implementations will be covered later

8

Dr. D. J. Jackson Lecture 27-15Electrical & Computer Engineering

State table and next-state maps

Present
state
y2y1

Next state
Output

zw=0 w=1

Y2Y1 Y2Y1

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

01

00

00

0

1

01
y2y1

w

0d

0d

11 10

Y1=wy1’y2’

10

00

00

0

1

01
y2y1

w

1d

0d

11 10

Y2=w(y1+y2)

Dr. D. J. Jackson Lecture 27-16Electrical & Computer Engineering

State table and output map

Present
state
y2y1

Next state
Output

zw=0 w=1

Y2Y1 Y2Y1

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

d1

00

0
0

1

1
y1

y2

z=y2

9

Dr. D. J. Jackson Lecture 27-17Electrical & Computer Engineering

Circuit diagram

D Q

Q

D Q

Q

Y 2

Y 1
w

Clock

z

y 1

y 2

Resetn

Dr. D. J. Jackson Lecture 27-18Electrical & Computer Engineering

Timing diagram
t t t t t t t t t t t
0 1 2 3 4 5 6 7 8 9 10

1
0

1
0

1
0

1
0

Clock

w

y 1

y 2

1
0

z

1

Dr. D. J. Jackson Lecture 28-1Electrical & Computer Engineering

ECE380 Digital Logic

Synchronous Sequential Circuits:
Implementations using D-type,
T-type and JK-type Flip-Flops

Dr. D. J. Jackson Lecture 28-2Electrical & Computer Engineering

Counter design example

• Design a 2-bit counter that counts
– in the sequence 0,1,2,3,0,… if a given control signal U=1, or
– in the sequence 0,3,2,1,0,… if a given control signal U=0

• This represents a 2-bit binary up/down counter
– An input U to control to count direction
– A RESET input to reset the counter to the value zero
– Two outputs (Z1Z0) representing the output (0-3)
– Counter counts on positive edge transitions of a common

clock signal
• Design this counter as a synchronous sequential

machine using
– D-type, T-type, JK-type flip-flops

2

Dr. D. J. Jackson Lecture 28-3Electrical & Computer Engineering

Counter state diagram

A/Z1Z0=00

C/Z1Z0=10

D/Z1Z0=11 B/Z1Z0=01

reset

U=1

U=1U=1

U=1

U=0

U=0 U=0

U=0

Dr. D. J. Jackson Lecture 28-4Electrical & Computer Engineering

Counter state table

Present
state

Next state Output
Z1Z0U=0 U=1

A D B 00
B A C 01
C B D 10
D C A 11

3

Dr. D. J. Jackson Lecture 28-5Electrical & Computer Engineering

State-assigned state table

• Choosing a state assignment of A=00, B=01, C=10
and D=11 makes sense here because the outputs
Z1Z0 become the outputs from the flip-flops directly

Present
state
y2y1

Next state
Output

Z1Z0
U=0 U=1

Y2Y1 Y2Y1

A 00 11 01 00

B 01 00 10 01

C 10 01 11 10

D 11 10 00 11

Dr. D. J. Jackson Lecture 28-6Electrical & Computer Engineering

D-type flip-flop implementation

• When D flip-flops are used to implement an
FSM, the next-state entries in the state-
assigned state table correspond directly to
the signals that must be applied to the D
inputs

• Thus, K-maps for the D inputs can be derived
directly from the state-assigned state table

• This will not be the case for the other types
of flip-flops (T, JK)

4

Dr. D. J. Jackson Lecture 28-7Electrical & Computer Engineering

State table and next-state maps

Present
state
y2y1

Next state
Output

Z1Z0
U=0 U=1

Y2Y1 Y2Y1

A 00 11 01 00

B 01 00 10 01

C 10 01 11 10

D 11 10 00 11

01

01

00

0

1

01
y2y1

u

10

10

11 10

Y1=y1’

Y2=(y2y1u)’

10

01

00

0

1

01
y2y1

u

10

01

11 10

Z1=y2 Z0=y1

Dr. D. J. Jackson Lecture 28-8Electrical & Computer Engineering

Circuit diagram (D flip-flop)

Vcc

U
clock
reset

Z0

Z1

5

Dr. D. J. Jackson Lecture 28-9Electrical & Computer Engineering

Design using other flip-flop types

• For the T- or JK-type flip-flops, we must
derive the desired inputs to the flip-flops

• Begin by constructing a transition table for
the flip-flop type you wish to use
– This table simply lists required inputs for a given

change of state
• The transition table is used with the state-

assigned state table to construct an
excitation table
– The excitation table lists the required flip-flop

inputs that must be ‘excited’ to cause a transition
to the next state

Dr. D. J. Jackson Lecture 28-10Electrical & Computer Engineering

Transition tables

J K Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Q Q+ J K
0 0 0 D
0 1 1 D
1 0 D 1
1 1 D 0

JK transition
table

Q Q+ T
0 0 0
0 1 1
1 0 1
1 1 0

T Q Q+

0 0 0
0 1 1
1 0 1
1 1 0

T transition
table

The transition table lists required flip-flop
inputs to affect a specific change

6

Dr. D. J. Jackson Lecture 28-11Electrical & Computer Engineering

T-type flip-flop implementation

Present
state
y2y1

Flip-flop inputs
Output

Z1Z0
U=0 U=1

Y2Y1 T2T1 Y2Y1 T2T1

00 11 11 01 01 00
01 00 01 10 11 01
10 01 11 11 01 10
11 10 01 00 11 11

Q Q
+

T

0 0 0
0 1 1
1 0 1
1 1 0

Use entries from the transition table
to derive the flip-flop inputs based on
the state-assigned state table.

excitation table

Dr. D. J. Jackson Lecture 28-12Electrical & Computer Engineering

1

Excitation table and K-maps

Present
state
y2y1

Flip-flop inputs
Output

Z1Z0
U=0 U=1

T2T1 T2T1

00 11 01 00
01 01 11 01
10 11 01 10
11 01 11 11

Z1=y2 Z0=y1 T2=y1u+y1’u’=(y1u)’

10

0

00

0

1

01
y2y1

u

01

10

11 10

11

11

00

0

1

01
y2y1

u

11

11

11 10

T1=1

7

Dr. D. J. Jackson Lecture 28-13Electrical & Computer Engineering

Circuit diagram (T flip-flop)

U

clock

Vcc Z0

Z1

reset

Vcc

Dr. D. J. Jackson Lecture 28-14Electrical & Computer Engineering

JK-type flip-flop implementation

• Use entries from the transition table to derive the
flip-flop inputs based on the state-assigned state
table
– This must be done for each input (J and K) on each flip-flop

Q Q+ J K
0 0 0 D
0 1 1 D
1 0 D 1
1 1 D 0

JK transition
table

Present
state
y2y1

Next state
Output

Z1Z0
U=0 U=1

Y2Y1 Y2Y1

00 11 01 00
01 00 10 01
10 01 11 10
11 10 00 11

8

Dr. D. J. Jackson Lecture 28-15Electrical & Computer Engineering

JK-type flip-flop implementation

Q Q+ J K
0 0 0 D
0 1 1 D
1 0 D 1
1 1 D 0

JK transition
table

Present
state
y2y1

Flip-flop inputs

Output
Z1Z0

U=0 U=1

Y2Y
1

J2K
2

J1K1
Y2Y
1

J2K
2

J1K
1

00 11 1D 1D 01 0D 1D 00
01 00 0D D1 10 1D D1 01
10 01 D1 1D 11 D0 1D 10
11 10 D0 D1 00 D1 D1 11

Dr. D. J. Jackson Lecture 28-16Electrical & Computer Engineering

Excitation table and K-maps

Present
state
y2y1

Flip-flop inputs

Output
Z1Z0

U=0 U=1

Y2Y
1

J2K
2

J1K1
Y2Y
1

J2K
2

J1K
1

00 11 1D 1D 01 0D 1D 00
01 00 0D D1 10 1D D1 01
10 01 D1 1D 11 D0 1D 10
11 10 D0 D1 00 D1 D1 11

D1

D1

00

0

1

01
y2y1

u

1D

1D

11 10

J1=1
1D

1D

00

0

1

01
y2y1

u

D1

D1

11 10

K1=1

9

Dr. D. J. Jackson Lecture 28-17Electrical & Computer Engineering

Excitation table and K-maps

Present
state
y2y1

Flip-flop inputs

Output
Z1Z0

U=0 U=1

Y2Y
1

J2K
2

J1K1
Y2Y
1

J2K
2

J1K
1

00 11 1D 1D 01 0D 1D 00
01 00 0D D1 10 1D D1 01
10 01 D1 1D 11 D0 1D 10
11 10 D0 D1 00 D1 D1 11

10

01

00

0

1

01
y2y1

u

DD

DD

11 10

J2 =(y1u)’
DD

DD

00

0

1

01
y2y1

u

01

10

11 10

K2=(y1u)’

Dr. D. J. Jackson Lecture 28-18Electrical & Computer Engineering

Circuit diagram (JK flip-flop)
Vcc

Vcc

U

clock
reset

Z0

Z1

Lecture Six

1011
Moore

10
101

1011

11011

1

Mealy

11

1101101

110 Detector
Mealy

Moore

1 11 110

1
11

1 10
101

1 10

11
110

101

1 11 110

OutputNext StatePresent State

IN=0 IN=1IN=0 IN=1

Q QQ Qq

0 10 1 0

1 0 1 11

a

b

0 1

1

ത𝑞

𝐼𝑁

𝐼𝑁

q

0 1

1 1

𝑄 = 𝐼𝑁 + 𝑞

10
qത𝑞

1𝐼𝑁

𝐼𝑁 0

1

1

0

𝑍 = 𝐼𝑁 𝑋𝑂𝑅 𝑞

X

Home Work

Output

Y

Next State
I=0 I=1

A B A B

Present State

A B

0 0

Solve previous question in other form

AB

I

t10t9t8t7t6t5t4t3t2t1t0Clock
Cycle

10111011010W

00110010000Z

A B

W=0/ Z=0

W=1/ Z=0

W=0/ Z=0

W=1/ Z=1

OutputNext StatePresent State

W=0 W=1W=0 W=1

0 0A BA

0 1A B B

A

B

0 1

0

1

0 0

11

𝑦ത𝑦

ഥ𝑊

𝑊

𝑌 = 𝑊

0 1

1

ഥ𝑊

𝑊

Z= 𝑊𝑦

0 0

0 1

𝑦ത𝑦

Reset

clock

W D

Y

Lecture Seven

Example:-

State machine design 110 Mealy?

110 Detector Mealy

Output
E=0 E=1

Next State
E=0 E=1

Present State

0 0S0 S1S0

0 0 S0 S2 S1

1 0 S0 S2S2

Output
E=0 E=1
Z Z

Next State
E=0 E=1
Y2 Y1 Y2 Y1

Present State
Y2 Y1

0 00 0 0 10 0

0 00 0 1 00 1

1 00 0 1 0 1 0

d dd d d d1 1

d 000

d 1
1 1

d 000

d01 0

0 0

01

00 0001 0111 1110 10

𝐸
𝐸

ത𝐸 ത𝐸

𝑌2 𝑌1 𝑌2 𝑌1 𝑌2 𝑌1𝑌2 𝑌1 𝑌2𝑌1𝑌2𝑌1 𝑌2𝑌1𝑌2𝑌1

𝑌1 = 𝐸𝑌1 + 𝐸𝑌2 𝑌2 = 𝐸𝑌2 𝑌1

ത𝐸

𝑌2 𝑌1 𝑌2 𝑌1 𝑌2𝑌1 𝑌2𝑌1

0

𝐸 1

00 01 11 10

0 0 1d

d 000

𝑍 = ത𝐸 Y2

Output
Z

Next State
E=0 E=1

Present State

0S0 S1S0

0S0 S2 S1

0S3 S2S2

1S0 S1S3

Output

Z

Next State
E=0 E=1
Y2 Y1 Y2 Y1

Present State
Y2 Y1

00 0 0 10 0

00 0 1 0 0 1

01 1 1 01 0

10 0 0 11 1

`
00 01 11 10

1

0

1

0

𝐸

ത𝐸

𝑌2 𝑌1 𝑌2 𝑌1 𝑌2𝑌1 𝑌2𝑌1

𝑌1 = 𝐸𝑌2𝑌1 + 𝐸𝑌2 𝑌1 + ത𝐸 𝑌2𝑌1

0 0 1

001

00 01 11 10

𝐸

ത𝐸

𝑌2 𝑌1 𝑌2 𝑌1 𝑌2𝑌1 𝑌2𝑌1

1

0 0 0 0 1

00 1 1

𝑌2 = 𝐸𝑌2𝑌1 + 𝑌2𝑌1

0

00

1

0

0

1

1

𝑌1𝑌1

𝑌2

𝑌2

𝑍 = 𝑌2𝑌1Home Work
Draw circuit Diagram

Analyze the circuit below to obtain its state diagram?

Solution:-
𝑌 = 𝑄 = 𝑞. ത𝑘 + ഥ𝑞. J
𝐽𝐴 = 𝑦2. 𝑋
𝐾𝐴 = 𝑦2
𝑌1=𝑦1 . 𝐽𝐴 + 𝑦1𝑘𝐴
𝑌1=𝑦1 . 𝑦2. 𝑋 + 𝑦1𝑦2
𝐽𝐵 = 𝑋
𝐾𝐵 = ത𝑋

𝑌2=𝑦2 . 𝐽𝐵 + 𝑦2𝑘𝐵
𝑌2=𝑦2 . 𝑋 + 𝑦2𝑋
𝑍 = 𝑦1. 𝑦2

𝑦1𝑦2

Present
State 𝑌1𝑌2 𝑌1𝑌2

Next
State

X=1

00

01

10

11

00 01

00

00

11

10 11

01

Z

0

0

0

1

𝑦1𝑦2

Present
State 𝑌1𝑌2

01

11

00

Next
State

10 a b

cd

a

a

b

c

X=1
𝑌1𝑌2

0

0

0

1

Z

State Machine Analysis

From the state equation and output equation, construct the state
transition – output table.

State Equation

𝑄0
∗ = 𝑄1 .x

𝑄1
∗ = 𝑄1 .x+𝑄0 .x

Output Equation
𝑦 = 𝑄0 + 𝑄1 . ҧ𝑥

x=0 x=1
𝑄1
∗ 𝑄0

∗ 𝑦 𝑄1
∗ 𝑄0

∗ 𝑦
𝑄1 𝑄0

0 0 0 0 1 00 0

0 0 1 1 1 00 1

0 0 1 1 0 01 0

0 0 1 1 0 01 1

Lecture eight

D Flip-Flop

OutputNext StatePresent State

X=1X=0X=1X=0

YYABABBA

10100000

00001110

01011001

01100011

D Flip-Flop

Design using D flip-flop

00 01 1011

0

1

0 0 11

11 00𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵
11

0 1

1

𝐴 ത𝐵ҧ𝐴 ത𝐵
00 01 10

ഥ𝐴 𝐵 𝐴𝐵

000

1 00 0

ത𝑋

𝑋

𝐷𝐴 = ത𝑋 ҧ𝐴 B + ത𝑋𝐴 ഥ𝐵 +𝑋 ҧ𝐴 ത𝐵 + 𝑋𝐴𝐵 𝐷𝐵 = ത𝑋 ҧ𝐴 B + 𝑋𝐴 ത𝐵

0

1

0 1

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

0

0

0

1

1 0 𝑌 = ത𝑋𝐴 +𝑋 ҧ𝐴 ത𝐵

T Flip-Flop

OutputFlip-flop InputsNext StateInputPresent state

YTBTABAXBA

00000000

10101100

00111010

01000110

10001001

01110101

11100011

01001111

T Flip-Flop

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

0 11 0

00 11

𝑇𝐴 = ഥ𝑋 𝐵 + 𝑋 ത𝐵

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

0 00 1

1 10 1

𝑇𝐵 = 𝑋𝐴 + 𝑋𝐵 + 𝐴𝐵

Y as previous case
in D flip-flop

RS Flip-Flop

RS Flip-Flop

Output1Flip flop InputsNext StateInputPresent State

Y𝑆𝐵𝑅𝐵𝑆𝐴𝑅𝐴BAXBA

00x0x00000

10x1001100

0x01011010

0010x00110

10xx001001

0100110101

1010100011

001x001111

Circuit Excitation Table

RS Flip-Flop

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

𝑋

ത𝑋

ҧ𝐴 ത𝐵 ഥ𝐴 𝐵 𝐴𝐵 𝐴 ത𝐵

0

1x 0

0 1x 0

0

𝑅𝐴 = ത𝑋𝐴𝐵 + 𝑋𝐴 ത𝐵

01 x

1 0 0

0

x

1

1

x

00

0

x

x

11

00

00

𝑆𝐴 = ത𝑋 ҧ𝐴𝐵 + 𝑋 ҧ𝐴 ത𝐵

𝑅𝐵 = 𝐴𝐵 + 𝑋𝐵 𝑆𝐵 = 𝑋𝐴 ത𝐵

Home Work

Design using JK flip-flop?

Lecture Nine

State Reduction

• Inspection

• Implication Table

Example (1)

Reduce the number of states for table shown below using Implication
table method?

Example (2)

OutputNext Sstate
X=0 X=1

Present state

0d ca

0d ac

1d cd OutputNext State
X=0 X=1

Present State

0d aa

1d ad

Inspection Method

Output
X=0 X=1

Next State
X=0 X=1

Present State

0 1B CA

0 1 B AB

1 0D BC

0 1D AD

Inspection MethodExample (3)

Output
X=0 X=1

Next State
X=0 X=1

Present State

0 1B CA

0 1B AB

1 0B BC

S2=S4

Output
X=0 X=1

Next State
X=0 X=1

Present State

0 0A BA

0 0C DB

0 0A DC

0 1E FD

0 1A FE

0 1G FF

0 1A FG

E=G , delet G

Substitute each G by E

Then D=F, delet F

Substitute each F by D

Output
X=0 X=1

Next State
X=0 X=1

Present State

0 0A BA

0 0C DB

0 0A DC

0 1E DD

0 1A D E

0/0

0/0

