University Of Diyala
College Of Engineering
Computer Engineering Department

Digital System Design 11

Dr. Yasir Amer Al-Zubaidi
Third stage
2021

Design of Digital Sequential Circuits Using New Methods
Microprogramming Overview

* Data path and Control
* Microoperations
* Sequencing and control

Datapath and Control

» Datapath - performs data transfer and processing operations
* Control Unit - Determines the enabling and sequencing of the

operations Describe properties of
/ the state of the datapath

Status signals
i

Control Control Control signals Basah

inputs unit yi atapa

i ,. Data
| | outputs
Control Data
outputs inputs
* The control unit receives: * The control unit sends:
* External control inputs * Control signals

* Status signals * Control outputs

Overview

= Datapath and control

= Microoperations
* Register transfer operations
® Microoperations - arithmetic, logic, and shift
* Register cell design
® Serial transfers and microoperations

= Sequencing and control

Register Transfer Operations

= Register Transfer Operations — the movement and
processing of data stored in registers

= Three basic components:
® A set of registers (operands)
* Transfer operations
® Control of operations

= Elementary operations -- called microoperations
® load, count, shift, add, bitwise "OR", etc.

Register Notation

= |etters and numbers —register (e.g. R2, PC, IR)

= Parentheses () — range of register bits (e.g. R1(1), PC(7:0),
AR(L))

R 76543210

15 8 7 0 15 0
PC(H) | PCL) R2

= Arrow («) — data transfer (ex. R1 « R2, PC(L) « RO)

= Brackets [] — Specifies a memory address (ex. RO «
M[AR], R3 « M[PC])

= Comma — separates parallel operations

Conditional Transfer

= If (K, =1) then (R2 « R1)
& K (R2 « R1)
where K, is a control
expression specifying a
conditional execution of
the microoperation.

& y
n Load
R1 > R2
? o
Clock
Clock—
K, I

TTransfer Occurs Hereq\

No Transfers Occur Here

Microoperations

= Logical groupings:
* Transfer - move data from one set of registers to another
® Arithmetic - perform arithmetic on data in registers
* Logic - manipulate data or use bitwise logical operations
* Shift - shift data in registers

Arithmetic operations Logical operations
+ Addition v Logical OR
— Subtraction A Logical AND
" Multiplication @ Logical Exclusive OR
/ Division ~ Not

Example Microoperations

* R1«<R1+R2

® Add the content of R1 to the content of R2 and place the
result in R1.

* PC«~R1*R6
* R1« R1aR2

= (K1+K2): R1« R1vR3

® On condition K1 OR K2, the content of R1 is Logic bitwise
Ored with the content of R3 and the result placed in R1.

® NOTE: "+" (asin K; + K;) means "OR." In R1 « R1 + R2, +
means “plus.”

Arithmetic Microoperations

Svmbolic Designation| Description

RO <~ R1 + R2 Addition

RO « R1 Ones Complement
RO<R1+1 Two's Complement
RO<R2+ R1+1 |R2 minusR1 (2's Comp)
Ri1<R1+1 Increment (count up)
Rl1<R1-1 Decrement (count down)

= Any register may be specified for source 1, source 2,
or destination.

= These simple microoperations operate on the whole
word

Logical Microoperations

Symbolic Description
Designation
RO « R1 Bitwise NOT

R0 < R1 v R2 |Bitwise OR (sets bits)

R0 <« R1 AR2 |Bitwise AND (clears bits)

R0 <« R1 ® R2 |Bitwise EXOR (complements bits)

Shift Microoperations

= Let R2 =11001001

Symbolic Description R1 content
Designation
R1 ¢« sl R2 Shift Left 10010010
R1 «sr R2 Shift Right 01100100

= Note: These shifts "zero fill''. Sometimes a separate

flip-flop is used to provide the data shifted in, or to
“catch” the data shifted out.

= QOther shifts are possible (rotates, arithmetic)

University Of Diyala
College Of Engineering
Computer Engineering Department

Digital System Design 1|

Dr. Yasir Al-Zubaidi
Third stage
2019

Multiplexer-Based Single Register
Transfers

= MUX connected to register outputs produce flexible
transfer structures

= Transfers: K1:_RU <— R1
K2 K1: RO <— R2

Loa

> B

S Load

Loa —Qiéru____ A

R1

Register Design

= Assume: a register consists of identical cells

= Register design can be approached as follows:

* Design a representative cell for the register
* Make copies of the cell and connect together to form the
register

* Applying appropriate “boundary conditions” to cells that need
to be different and contract if appropriate

= Regqister cell design is the first step of the above
process

Approach I: Multiplexer-based

= An n-input multiplexer with a variety of sources and functions
» Load enable by OR of control signals K, K4, ... K1 (for 00...0, no load)

= Use encoder + muttiptexer
to select sources and/or

transfer functions
....... -
| logcd
- """" Y| Dedicated
—— lopc k-1 i
S N
.ﬁ.‘
e

Example 1: Register Cell Design

Register A (m-bits) Specification:
* Data input: B; Control inputs (CX, CY): (0,0), (0,1) (1,0)
* Register transfers:
« CX:A—BVA; CY:A<B®A: Hold state: (0,0)
Load Control: Load = CX + CY

Since all control combinations appear as if encoded (0,0),
(0,1), (1,0), can use multiplexer without encoder:

S, =CX
Sp=CY CX

lp=A Hold A cY
,=A«—B®A CY=1 S
|E=Ait—Ei‘.FAi CX=1 Iy

Approach ll: Sequential Circuit Design

* Find a state diagram or state table

= For optimization:
* Use K-maps for up to 4 to 6 variables
* Otherwise, use computer-aided or manual optimization

Example 1 Again

= State Table for D::

Hold Aiv Bi Ai(®Bi

CX=0 | cX=1 | cx=1| cx=0 | cXx=0
A | CY=0 | cYy=0 | cY=0| cy=1 | cy=1
B=0 | B=1 | B=0 | B=

0 0 0 1 0 1
1 1 1 1 1 0

® Four variables (CX, CY, A, B) should give a total of 16
state table entries

® By using:
= Combinations of variable names and values
= Don't care conditions (for CX = CY = 1)

only 12 entries are required to represent the 16 entries

Example 1 Again (Contd.)

= K-map - Use variable ordering CX, CY, A, B;and

assume a D flip-flop

D,

1

CY

CX

Example 1 Again (Contd.)

= The resulting SOP equation:
D,=CXB +CYAB +AB +CYA

=CXB, +A (CYB)+A(CYB),)
=CXB,+A®(CYB)
The gate input cost per cell = 13
= The gate input cost per cell for the previous

version Is:

Per cell: 19
Shared decoder logic: 8

= Cost gain by sequential design > 6 per cell

= Also, no Enable on the flip-flop makes it cost
less

Serial Transfers and Microoperations

= Serial Transfers

* Used for “narrow” transfer paths
* Example 1: Telephone or cable line

= Parallel-to-Serial conversion at source
= Serial-to-Parallel conversion at destination
Load/Right Shift Registers

= Serial microoperations 5‘*"“"—.

* Example 1: Addition In L—pf A
= Alow costway f f f f FA
= Loss in performance A3 A2 Al A0 B Sum
Parallel Load | Cin
Serial_._ Cout
B3 B2 Bl B0
Parallel Load Q D
(Clock and Load/Shift P
Control not shown)

Overview

= Datapath and control
= Microoperations

= Sequencing and control

® Algorithmic State Machines (ASM)

= ASM chart

= Timing considerations

= ASM chart examples: Binary multiplier
® Hardwired Control

= Control design methods

= Sequence register and decoder

= One flip-flop per state

* Microprogrammed control

Control Unit Types

= Two distinct classes:

* Programmable
* Non-programmable.

= A programmable control unit:

* An external memory array for storing instructions and control
information

* A program counter (PC) register points to the next instruction
to be executed

* Decision logic for determining the sequence of operations
and logic to interpret the instructions
= A non-programmable control unit: does not fetch
instructions from a memory and is not responsible for
sequencing instructions

Algorithmic State Machines

The function of a sequential circuit can be represented
by a state table or a state diagram.

An Algorithmic State Machine (ASM) is a flowchart-
like way to specify state diagrams for sequential logic
and, optionally, actions performed in a datapath.

A flowchart is a way of showing actions and control flow in an
algorithm.

An ASM explicitly specifies a sequence of actions and their timing
relationships

An ASM chart directly leads to a hardware realization
Primitives:
1. State Box (a rectangle)

2. Decision Box
| Scalar (a diamond)
Il. Vector (a hexagon)
3. Conditional Output Box (an oval)

State Box

= A rectangle with:
® The symbolic name for the state
® An optional state code

® Containing register transfer operations, and outputs
activated within or while leaving the state

The symbolic name for the state IDLE 1 0000

marked outside the upper left top Register transfers or outputs
An optional state code, if assigned,

outside the upper right top R0
RUN

1

Decision Box

= Scalar : A diamond with:
* One input path (entry point).
* One input condition that is tested.

* A TRUE/FALSE exit path (logic
1/0).

(False Condition) (True Condition)

= Vector: A hexagon with:
® One input path (entry point).
* Avector of input conditions
tested.

* Up to 2" output paths. The path
taken has a binary vector value
that matches the vector input
condition

(Binary Vector Values) (Binary Vector Values)

(Vector of Input
Conditions)

Z, Q0

Conditional Output Box

= An oval with:
* One input path from a decision box(es)

* One output path From Decision Box(es)
* Register transfers or outputs that occur
only if the conditional path to the box is
taken. (Register transfers
= Transfers and outputs or ﬂﬁtPU}lﬁl
* in a state box are Moore type - RI{T_H
dependent only on state
* in a conditional output box are Mealy l
type - dependent on both state and

inputs

Connecting Boxes Together

By connecting boxes together, we see the power of

expression.
P DLE |

A—10
AVAIL

= What are the:

* Inputs? start 0 1
* Outputs? Avalil, Init
* Conditional Outputs? y

* Transfers? A<-0, PC<-0 (PC “)
* Conditional Transfers? INIT, transfer: PC<-0

ASM Blocks

= One state box along
with all decision and
conditional output
boxes connected
to it, called an ASM
Block. i.e., the ASM Block
Includes all items on the
path from the current
state to the same or other
states.

ASM BLOCK

ASM Timing

= Qutputs appear while in the state

= Register transfers and conditional outputs occur at the clock
while exiting the state - New value occur in the next state!

Clock cycle 1 Clock cycle 2 Clock cycle 3 ’
Clock [

ASM BLOCK]

START

Q,

uﬂ - Ai— |

State IDLE X MUL 1 T

AVAIL \

A 0034 X 0000

Multiply Overview

« Binary multiplication is just a bunch of left shifts and adds

multiplicand
multiplier

partial
> product

array

\

-

can be formed in parallel
~ and added in parallel for
faster multiplication

double precision product

Multiplier Example

= Example: (101 x 011) Base 2

= Partial products are: 1 0 1 multiplicanc
101x 0,101 x 1,and 101 x 1 Xx 0 1 1 multiplier
1 0 1
1 0 1
0 0 0
0O 0 1 1 1 1

Multiplication: Implementation (version 1)

Multipllerd = 1 1. Test MuRigherd = 0
MuRlplier
r

* 1a. Add mumglicand fo proguct and
Muttiplicand place the result In Product register
St ke [--—
A
£4 bits —
E—

L]]
Multipller
64-bit ALL S night |- 2. Shift the Muliplicand register et 1 bit
1 l
| Proguct Control test }"'— 3. Shift the Multiplier ragistar rigt 1 bit

Virtie
'\ / Mo = 32 repetitions
¥
Yies: 32 repetiions

Datapath

B4 bits

Control

Unisigned shift-add multiplier (version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,

32-bit multiplier reg

A ———

Multiplicand

Shift Left

\ 64 bits

64 bltALU /

Product
64 bits

Write

—

Mulnphﬂﬁj Shift Right

32 bits

Multiplier = datapath + control

N

Control

ultiply Algorithm Version 1

gy il iy

Multiplier0 =1

Multiplier0 =0

1a. Add multiplicand to product &
place the result in Product register

Product Multiplier Multiplicand
0000 0000 0011 0000 0010
0000 0010 0011 0000 0010
0000 0010 0011 0000 0100
0000 0010 0001 0000 0100
0000 0110 0001 0000 0100
0000 0110 0001 0000 1000
0000 0110 0000 0000 1000
0000 0110 0000 0000 1000

2. Shift the I'Iri[ulti!}licanrl 1'egi5te1' left 1 hit.l

L

3. Shift the Multiplier register right 1 bit.

No:< 32 1'ePeriliuns

| Yes: 32 repetitions

Done
2004 Margan Kaufmarn Publishers 25

Observations on Multiply Version 1

« 1 clock per cycle => =~ 100 clocks per multiply
because of 32 repetitions, 3 steps in one repetition

— Ratio of add/sub to multiply is from 5:1 to 100:1
— Slow

« 0’s inserted in the rightmost bit of multiplicand as
shifting left
=> |east significant bits of product never changed
once formed

« 1/2 bits in multiplicand always 0

— MSB are 0s at the beginning
— 0Ois inserted in LSB as multiplicand shifting left

=> 64-bit multiplicand register is wasted
=> 64-bit adder is wasted

Instead of shifting multiplicand to left, let’s shift
productto right 2004 Mergan Kastnarm usterers 2 6

MULTIPLY HARDWARE Version 2

« 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product
reg, 32-bit Multiplier reg

[Multiplicand

32 bits

I'lrf[lllﬁp]iﬂ'ﬂ Shift Right

it ALT 32hit7
l —ly Shift Right
Write k

| 64 bits

Product Multiplier Multiplicand

Multiply Algorithm Version 2

Multiplier(=1

Multiplier0 =0

la. Add multiplicand to the left half of product &
place the result in the left half of Product register

WhSwpRLhSen e

0000 0000 0011 0010

0010 0000 0011 0010

0001 0000 0011 0010 2. Shift the Product 1'Eg‘ster 1*iﬂl11t 1 bit.

0001 0000 0001 0010
0011 0000 0001 0010

0001 1000 0001 0010

3. Shift the Multiplier register right 1 bit.

0001 1000 0000 0010
0001 1000 0000 0010
0000 1100 0000 0010
0000 1100 0000 0010
0000 1100 0000 0010
0000 0110 0000 0010
0000 0110 0000 0010

0000 0110 0000 0010

No: < 32 l‘EPEl‘iﬁﬂﬂ.‘i

| Yes: 32 repetitions

Done

©2004 Morgan Kaufmann Pubilshers 2 8

([Start)

Still more wasted space in Version2!

Multiplier0 =1

1. Test Multiplier0 = 0
Multiplier

1a. Add multiplicand to the left half of product &

lace the result in the left half of Product register
Product Multiplier Multiplicand

 mos o oo -

2: 0001 0000 0011 0010 | 2. Shift the Product register right 1 bit.

3: 0001 0000 0001 0010 l

1: 0011 0000 0001 0010

2: 00011000 0001 0010 3. Shift the MulriElier l'egister 1‘ight 1 bit.
3: 0001 1000 0000 0010

1: 0001 1000 0000 0010 1

2: 00001100 0000 0010 37 nd

3: 00001100 0000 0010 n No: < 32 repetitions
1: 0000 1100 0000 0010 epetition.

2: 0000 0110 0000 0010

3: 0000 0110 0QOO0O 0010 | Yes: 32 repetitions

0000 0110 0000 0010

Observations on Multiply Version 2

* Productregister wastes space that exactly matches
size of multiplier
=> combine Multiplier register and Product register

Example (101) x(01 1) Again

» Reoraanizina example to follow hardware algorithm:

o O O 4+ O O 4+ O 9w

Multiplicand (B)

1 0 1-
0 1 1«
0O 0 O
1 0 1
1 0 1
0 1 O
1 0 1
1T 1 1
o 1 1
0 0 1

1
.1

Multiplier (Q)

Clear C || A (Carryand register A)
Multipler, =1 == Add B
Addition

Shift Right (Zero-fill C)
Multipler; =1==>Add B
Addition

Shift Right

1 Multipler, = 0 == No Add, Shift
Right

Multiplier Example: Block Diagram

n-1 IN
nk
l Multiplicand y

Counter P Register B

[logn ny
¥ ki
Zero detect
T (Go) Cout Parallel adder
'-'.Z n n
Control |Q, ¥ Multiplier y
unit B
0— C > Shift register A > Shift register Q

4/1(
n
A\ A

Control signals Product
ouT

W=

o

Multiplexer Example: Operation

The multiplicand is loaded into register B.
The multiplier is loaded into register Q.
When G becomes 1, register C|| A is initialized to 0.

Down Counter P is initialized to n — 1 (n = number of bits in
multiplier)

The partial products are formed in register C||A||Q.

Each multiplier (Q) bit, beginning with the LSB, is processed (if bit
is 1, B is added to partial product of A; if bit is 0, do nothing)
C|IAl|Q is shifted right using the shift register

* Partial product bits fill vacant locations in Q as multiplier is shifted
out

* If overflow during addition, the outgoing carry is recovered from C
during the right shift

Steps 6 and 7 are repeated until P = 0 as detected by Zero detect.

University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design 11

ASM Based Datapath
and Control Design

Dr. Yasir Al-Zubaidi
Third stage
2021

Overview

= Datapath and control
= Microoperations

= Seqguencing and control

® Algorithmic State Machines (ASM)

= ASM chart

= Timing considerations

= ASM chart examples: Binary multiplier
® Hardwired Control

= Control design methods

= Sequence register and decoder

= One flip-flop per state

® Microprogrammed control

Multiplier Example: ASM Chart

‘ MULD

-
.&
0 o 1
L 4
A+— A+E,
C+—Cout
MUL1

C—0,CllA||Q—srC|lA]lQ,
P—P-1

—ﬂél

Multiplier Example: ASM Chart (Contd.)

* Three states employed here:
® IDLE state:

* input G is used as the condition for starting the
multiplication

= C, A, and P are initialized
®* MULO state: conditional addition is performed
based on the value of Q.

* MUL1 state:

* right shift is performed to capture the partial product and
position the next bit of the multiplier in Qg

* Down counterP=P - 1

* P=0is used to sense completion or continuation of the
multiplication.

Multiplier Example: Control Signal

Table

Control Signals for Binary Multiplier

Block Diagram Control Control
Module Microope ration Signal N ame Expression
Register 4: A0 Initialize IDILE - &G
A«—A+B I.oad MULO- @y
CllA4||Q@+srC| 4] @ Shift dec MUL1
Register B: B+— IN Load B LOADE
Flip-Flop C: C+—10 Clear C IDLE- G+ MUL1
C— Con Load —
Register O: Q «—IN Load O LOADQ
CllA||@+srC|| 4]0 Shift_dec =
Counter P: P+ n-1 Initialize —
P—P-1 Shift dec —

Multiplier Example: Control Signal
Table (Contd.)

» Signals are defined on a register basis

= LOADQ and LOADB: external signals controlled from
the system using the multiplier and will not be
considered a part of this design

* Many control signals are “reused” for different
registers.

® These 4 control signals are the “outputs” of the control unit:
initialize, load, shift dec, clear ¢

Multiplier Example - Sequencing Part of

ASM

= With the outputs
represented by the
table, they can be
removed from the

IDLE :i= 00

ASM making the
ASM to represent
only the sequencing

(next state) behavior

Similar to FsM)

01

MULA

Hardwired Control

= Control Design Methods

® Procedure specializations that use a single signal
to represent each state
» Sequence Register and Decoder

* Sequence register with encoded states, e.g., 00, 01, 10, 11.

* Decoder outputs produce “state” signals, e.g., 0001, 0010,
0100, 1000.

* One Flip-flop per State

* Flip-flop outputs as “state” signals, e. g., 0001, 0010, 0100,
1000.

Multiplier Example: Sequencer and

Decoder Design - Specifica

tion

= |nitially, use sequential circuit design techniques

» First, define:
¢ States: IDLE, MULO, MUL1

* Input Signals: G, Z, Qq (Q, affects outputs, not next state)
* Qutput Signals: Initialize, LOAD, Shift Dec, Clear C

* State Transition Diagram (Use Sequencing ASM)

* Qutput Function: Use Control Signal Table

= Second, find

¢ State Assignments

* Use two state bits to encode ‘
the three states IDLE, MULDO,

and MUL1.

State | M1 | MO
IDLE 0 0
MULO 0 1
MULI1 1 0
Unused 1 1

Multiplier Example: Sequencer and

Decoder Design - Formulation

* Assuming that state variables M1 and MO are decoded into
states, the next state part of the state table is:

Current State | Input | Next State Current State | Input | Next State
G Z M1 MO M1 MO G Z M1 MO

IDLE 00 0 O MULI 00 0 1
IDLE 0 1 0 O MULI 01 0 0
IDLE 1. 0 0 1 MULI I & 0 1
IDLE i 1 0 1 MULI 1 1 0 0
MULO 00 i B Unused | 0 0 d d
MULO g 9 . Unused | 0 1 d d
MULO 1 0 1 0 Unused I B d d
MULO i1 i o Unused I 1 d d

Multiplier Example: Sequencer and Decoder
Design —Equations Derivation/Optimization

» Finding the equations for M1 and MO using decoded states:
M1 =MULO .
MO=IDLE-G+MUL1-Z
* The output equations using the decoded states:
Initialize = IDLE - G
Load = MULO - Q
Clear C=IDLE - G+ MULA
Shift dec = MUL1

* Doing multiple level optimization, extract IDLE - G:
START =IDLE -G
M1 = MULO —_
MO = START + MUL1 - Z
Initialize = START
Load = MULO - Q
Clear C = START + MUL1
Shift dec = MUL1

= The resulting circuit using flip-flops, a decoder, and the above

equations is given on the next slide.

Multiplier Example: Sequencer and
Decoder Design - Implementation

Initialize
. Clear_C
DECODER |
AD of
1 :
2+ Shift_dec
Al 3 |

Load

12

-. » 0 .
s e Wik datapath_func : process (CLK)

library ieee; . ;
use ieee.std_logic_unsigned.all; variable CA: std_logic_vector (4 downto 0);
entity binary_multiplier is begin
port(CLK, RESET, G, LOADB, LOADQ: in std_logic; if (CLK'event and CLK='1") then
MULT_IN : in std_logic_vector (3 downto 0); if LOADB="1" th
MULT_OUT : out std_logic_vector (7 downto 0)) i .
end t&
end if;
architecture behavior_4 of binary_multiplier is if LOADQ = "1’ then
type state_type is (IDLE, MULO, MUL1); Q <= MULT_IN;
variable P:=3; end iF:

signal state, next_state : state_type;

signal A, B, Q:std_logic_vector(3 downto 0); case state is

signal C, Z:std_logic; when IDLE =>
begin if G ="1"then
Z<= P(1) NOR P(0); C<="0";
MULT_OUT <= A & Q; A<= 11000011;
state_register : process (CLK, RESET) p <="117%
begin end if;
if (RESET = '1') then when MULO =>
| rsft?gle_l((: IDtLE; d CLK='"1") th g Q{O) g
els event an = en - + (0" :
state <= next_state; | =By S aNEY,
endif; £hE
end process; CA:=C&A;
end if;
next_state_func : process (G, Z, state) C <= CA(4);
aegln A <= CA(3 downto 0);
case state is
when IDLE => when MUL1 =>
if G="1'then next_state <= MULD; C<="04
else next_state <= IDLE; A <= C & A(3 downto 1);
end if; Q <= A(0) & Q(3 downto 1);
When MULD => p <= p ™ ||01u.
next_state <= MUL1; d . !
when MUL1 => G e
if Z='1"then next_state <= IDLE; end if;
else next_state <= MULD; end process;
end if;
end case; end behavior_4;

end process;

Speeding Up the Multiplier

= |n processing each bit of the multiplier, the
circuit visits states MULO and MUL1 In
sequence.

= By redesigning the multiplier, is it possible to
visit only a single state per bit processed?

Speeding Up Multiply (Contd.)

* The operations in MULO and MULA1:
® In MULO, a conditional add of B

® In MUL1, aright shiftof C || A || Q in a shift register, the
decrementing of P, and a test for P = 0 (on the old value of P)

= Any solution that uses one state must combine all of
the operations listed into one state

® The operations involving P are already done in a single state,
so not a problem.

® The right shift, however, depends on the result of the
conditional addition. So these two operations must be
combined!

Speeding Up Multiply (Contd.)

= By replacing the shift
register with a
combinational shifter
and combining the
adder and shifter,

the states can be merged.

= The C-bit is no longer needed.

= In this case, Z and Q,
have been made into
a vector.

IDLE

Al Q¢ sr Coull (A+O)B)

ol

L

h

00

Al QésrC

ax|l (A+0)]| Q

10

A

01

A

y

11

@Q(—sr Cou || (A+B)®

S

Y

@Q st Cout || (A+B}®

Microprogrammed Control

Condmi*

= Microprogrammed Control — a iy Shele signals from dofene
control unit with binary control | b ¢
values stored as words in memory. Next-address -
generator
. . \ . l‘ Seguancer
= Microinstructions — words in the)
Control addess
control memory. register
. Mfcroprogram — a sequence of
microinstructions. .
memory
(ROM)
= Control Memory — RAM or ROM Dite
memory holding the ————
mlcrOInstructlons o + +_ -
: i Confrol defle regiaer’
® Whiteable Control Memory — RAM g {oponed) g
Memory into which b p {,m

microinstructions may be written

University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design 11
Memories Overview

Dr. Yasir Al-Zubaidi
Third stage
2021

Memories

Non-
Volatile Memory volatile
Memory
Random Sequential Mask-Programmed ROM
Access Access EPROM (PROM) (nonvolatile)
FIFO
DRAM TR E=PROM
SRAM Shift Reralster FLASH
CA

Volatile: need electrical power

Nonvolatile: magnetic disk, retains its stored information after the removal of power

Random access: memory locations can be read or written in a random order

EPROM: erasable programmable read-only memory

EEPROM: electrically erasable programmable read-only memory

FLASH: memory stick, USB disk

Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-
first-out (stack), shift register, content-addressable memory

Memories

= k address lines are A basic memory system:
decoded to address 2k

words of memory. L Datai’:“t Lines
= Each word Is n bits. k address "EES Mﬁwi?ry
—~®| 2<Words
* Readand Writeare __ 1 _|nBisperion
single control lines N
defining the simplest Vrte
memory operations. i“

n Data Output Lines

Memory Operation Timing - Reading

= Most basic memories are asynchronous
* Storage in latches or storage of electrical charge
* No clock
* Controlled by control inputs and address, which are controlled by CPU

and synchronized by its own clock
Timing of signal changes/data observation is critical to the operation

20 ng—

Clock T1 T2 T3 T4 ™
Address [l Address valid g
Memory
enable _/ _

Read/

Write

Data

Data

65 ns
Read cycle

Read cycle: the access time, the maximum time from the application
of the address to the appearance of the data at the Data output.)

Memory Operation Timing - Writing

—20 hs—

Clock T1 T2 T3 T4 T1
Address .(Address valid)-
Memo
enablery / N _

Read/ \ /—

Write
- 75 ns -
Write cycle

= Write cycle: the maximum time from the application of the
address to the completion of all internal operations required to
store a word
= Critical times measured with respect to edges of write pulse (1-
0-1):
* Address must be established at least a specified time before 1-0

and held for at least a specified time after 0-1 to avoid disturbing
stored contents of other addresses

* Data must be established at least a specified time before 0-1 and

held for afleasta specified fime affer 0-1 fo write correcily

VHDL code for ROM

library IEEE;
use |[EEE.std logic 1164.all;

ENTITY rom8x4 IS

PORT (

addr: in std_logic_vector(2 downto 0);
q: out std logic vector(3 downto 0));
END rom8x4;

ARCHITECTURE behav OF rom8x4 IS
BEGIN

PROCESS(addr)
BEGIN
CASE addr IS
when "000" => q <="0001";
when "001" => q <="0000";
when "010" => q <="0111";
when "011" => q <= "1101";
when "100" => q <="1000";
when "101" => q <="1100";
when "110" => g <="0110";
when "111" => g <= "1011";
when others => NULL;
END case;
END process;
END behav;

Random Access Memories (RAMSs)

= Read/Write memory
= Types:
* Static RAM (SRAM):
= Once a word is written at a location, it remains stored as
long as power is applied to the chip, unless the same
location is written again.
= Fast speed, but their cost per bit higher.
= Application: Caches memories in Microprocessor

* Dynamic RAM (DRAM):

* The data stored at each location must be periodically
refreshed by reading it and then writing it back again,
otherwise it disappears.

= Their density is greater and their cost per bit lower, but the
speed is slower.

SRAM Cell

= Array of storage
cells used to

implement static
RAM

= Storage Cell
®* SR Latch

® Input “Select” for
control
® Dual Rail Data
* InputsBandB _
= QutputsC and C

word

N Y-
R-c

@)

RAM cell

SRAM Bit Slice

= Represents all
circuitry that is
required for 2" 1-bit
words
® Multiple RAM cells

® Control Lines:

= Word selecti
— one for each word

* Read/ Write
= Bit Select
® Data Lines:

= Data in
= Data out

Word Select
select
- ; LC Word
}- =S Q i select
E o 0 ’
- .C ;
B :)_ i B) 3 RAM
RAM cell Word
select
1
Word Select :
select! Word *
i | ! select
3 m o1
s o X m§
_ —R Qb Read/Writ
RaAMcell logic
tj —Datain
. Data ouf~
Read! Bit
s 0 Write selec
B o (b) Symbol
| Wirkte loic | :
= : Data out
=y Bi RO Dota on
Write select

(a) Logic diagram

2"-Word by 1-Bit RAM IC

= To build a RAM IC
from a RAM slice:

® Decoder decodes
the n address lines
to 2" word select
lines

® A 3-state buffer on
the data output
permits RAM ICs to
be combined into a
RAM with ¢ x 2"
words

4-to-16 Word seleft

Decoder 0 I
A2 1
2 RAM cell
Ay 2 3
1 o T
A 5
o Aq
6 RAM c 2
Ag| 2 7
8 Ar]
. A
10 i
16x1
11 g RAM
12
13
14 Data_ . Data
input output]
15 =
j
Read!
Write
Read/Write Chip -
logic select
Data input Data in
Data out Diata L
ouiput
Read/ it
Read/ Write
Chip select

(a) Block diagram

Cell Arrays and Coincident Selection

= Memory arrays can be very large =>
® Large decoders
® Large fanouts for the input bit lines

® The decoder size and fanouts can be reduced by
approximately./p using a coincident selectionin a 2-D
array: uses two decoders, one for words and one for bits:
= Word select becomes Row select
= Bit select becomes Column select

= See next slide for example

Cell Arrays and Coincident Selection
(Contd.)

Row decoder
A, and A, used for Row select (24 [
A, and A, for Column select % T e
a2 Ilmgnnl m '
1
[

rov | [
3 |

o] | P

3 1
3 ;
ReadWrite ReadWrite
logic logic
Data in Data
Data out | Data ount [
Read! Bit ERead! Bit
Wrrite select Wrrite select]
Diata input
ReadWrite

Column | 2-ta—4 Decoder
decoder | with enable

,1 40

A3 A,

Making Larger Memories

= \We can make larger
memories from smaller
ones by using the
decoded higher order
address bits to control
CS (chip select) lines,
tying all address, data,
and R/W lines in
parallel.

= A 16-Word by1-Bit
memory constructed
using 4-Word by 1-Bit
memory.

Decoder
D3
D2
D1
A3 -»{s1 D0
A2 S0

Al ———p

A0

Data In
Al Ddn
AD
R/W
CS D-Out =
A1l D.n
AD
R/W
CS D-Out P
A1 pdn
A0
RIW
CS D-Out P
Al pun
AD
RIW
CS D-Out P
\ 4
Data Out

Making Wider Memories

= Tie the address and Dataln 3210
control lines in para_l[el —3|A! Din
and keep the data lines —>{R/W |

P|CS D-Out
separate.
MR o
= Example: make a 4-word ¢ ._: o’ Dp.out
by 4-bit memory from 4,
4-word by 1-bit memories [l P
y A o
& $ICS D-Out
= Note: Both 16x1 and 4x4 ﬁ; wun<h
memories take 4-chips R/W —._’—-—r RW
and hold 16 bits of data. 5

Data Out 3210

DRAM

= Basic Principle: Storage of information on
capacitors.

= Charge and discharge of capacitor to change
stored value

= Use of transistor as “switch” to:
¢ Store charges
® Charge or discharge

Dynamic RAM (Contd.)

= Circuit, hydraulic analogy, and logical model.

Select

(a)

Select

@)

To Pump

C

Stored 1

(b)
Write 1

s

(d)
Read 1

®

Stored 0

(©

7 Write 0

()
- Read 0

(b

(2

Dynamic RAM - Bit Slice

= C driven by 3-state
drivers

= Sense amplifier is
used to change the

small voltage change

onCintoHorL

* |n the electronics, B,
C, and the sense
amplifier output are
connected to make
destructive read into
non-destructive read

Word Select
select
0 4
B D Q E C
S C DRAM call
madel
Word Select
select
x-1]
= » |
= C DRAM cell
model
Data in———
Write | T
Bit Read logic
Write select

(a) Logic diagram

Word

select

Word

?eleu

Word

select
n. 1

——

Read/Writg
logic

Data in

Data out —
Read! Bit
Write seleqt

|
(b) Symbol

Data out

University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design 11
Microprogramming

Dr. Yasir Al-Zubaidi
Third stage
2021

Microprogramming Overview

= Part 1 — Datapaths
® Introduction

® Datapath Example
= Arithmetic Logic Unit (ALU)
= Shifter
¢ Datapath Representation and Control Word

= Part 2 — A Simple Computer
® Instruction Set Architecture (ISA)
¢ Single-Cycle Hardwired Control

= Part 3 — Multiple Cycle Hardwired Control

¢ Single Cycle Computer Issues
¢ Sequential Control Design

Introduction

= Computer Specification

® Instruction Set Architecture (ISA) - the specification
of a computer's appearance to a programmer at its
lowest level

® Computer Architecture - a high-level description of
the hardware implementing the computer derived
from the ISA

® The architecture usually includes additional
specifications such as speed, cost, and reliability.

software % \3\,

''''' Instru llon 50 t

hardware

Introduction (Contd.)

= Simple computer architecture decomposed into:

¢ Datapath: performing operations

= A set of registers
= Microoperations performed on the data stored in the registers
= A control interface

¢ Control unit: controlling datapath operations
= Programmable & Non-programmable

Control
inputs

o

Control
unit

_ Status signals

Control signals

-

I

Datapath

—_—

Control Data
outputs inputs

Describe properties of
the state of the datapath

Data
outputs

Datapath Example

B address

) Load enable) .
1D data

a " i Load
= Registerfile: : e
® Four parallel-load regs §) e

® Two mux-based

register selectors ,
® Register destination . Load
decoder 5 ‘D

= Microoperation Implementation : (

4

MUX

L

-

®* Mux B for external o123
constant input e
® Buses A and B with external Destination select

address and data outputs

® Function Unit:

= ALU and Shifter with
Mux F for output select

* Mux D for external data input

= Logic for generating status bits
V,C,N, Z

)
Registerfile| |

Dataln

Datapath Example: Performing a
Microoperation

Microoperation: RO < R1 + R2 L s N
P)

= Apply 01 to A select to place ; et m . . ;
contents of R1 onto Bus A . : ’

= Apply 10 to B select to place tead | [o :
contents of R2 onto B data and ' L :
apply 0 to MB select to place E =T |

: [0 !

B data on Bus B D N oo

= Apply 0010 to G select to perform g F :
addition G = Bus A + Bus B Load =

= Apply 0 to MF select and 0 to MD {Res s I i 5 [
select to place the value of G onto) E o] |

BUSD

= Apply 00 to Destination select to
enable the Load input to RO

= Apply 1 to Load Enable to force the Load

Vi | Aidumtchgic | 0—lk Shifter E|-o
input to RO to 1 so that RO is loaded on :"— " |
the clock pulse (not shown) zl !

= The overall microoperation requires Bt

1
DV Y R 7
8 < DataIn

k MD select - E]

1 clock cycle

Datapath Example: Key Control Actions
for Microoperation Alternatives

Various microoperations: % S L
= Perform a shift microoperation: D_La&+JT\
apply 1 to MF select e
= Use a constant in a micro-operation Dﬂ*\llj - ;
using Bus B: apply 1 to MB select > > aux
= Provide an address and data for a . s k- - '
memory or output write § D_‘_“’l_‘ T HEl |—>
microoperation — apply 0 to Load ‘ i L

enable to prevent register loading

= Provide an address and obtain data
for a memory or output read
microoperation — apply 1 to MD
select

= For some of the above, other control
signals become don't cares

Arithmetic Logic Unit (ALU)

= Decompose the ALU into:

® An arithmetic circuit & A logic circuit

® A selector to pick between the two circuits

C.

» C,

| R |

= =G,
i Ay
Omne stage of
B; »{B; arithmetic
54 >S, circuit
S1 =15;
1A

Y

i
B; One stage of

S logic circuit
0

5;

2-to-1
0 MUX

Arithmetic Circuit Design

= Arithmetic circuit desian = There are only four functions of B
_ g ~ toselectasYIinG=A+Y +C;;
® Decompose the arithmetic circuit C.;=0 Cin=1
mto;A bit parallel add = CrAr
= An n-bit parallel adder i
B = =
= Ablock of logic that selects four = — =i B_ e B_+ 1
choices for the B input to the B G=A+B G=A+B+1
Adder F mpe G=A
Cin ;
n
A > X
n n-bit n
B parallel [G=X+Y+Gn
B input n adder
S — logic ¥
S —

Cout

4-Bit Basic Left/Right Shifter

B3 BZ

¢12M

S

012N

S U S U

|V X X
2|

H3 HZ

= Serial Inputs:
® |, for right shift
® | for left shift

B] BO
Fk
01 2M 01 2M
S U S U
X X
H H,

= Shift Functions:
(S4, Sy) =00 Pass B unchanged
01 Right shift
10 Left shift
11 Unused

Barrel Shifter

S
S
32108 321083210893 2108%
] M M M
U U U U
| X I X ‘ X | X
Y3 Y2 Yi Yo

= Arotate is a shift in which the bits shifted out are inserted into the positions

vacated

The circuit rotates its contents left from O to 3 positions depending on S:
S = 00 position unchanged S = 10 rotate left by 2 positions
S = 01 rotate left by 1 positions S = 11 rotate left by 3 positions

Combinational Shifter from MUXes

Basic Building Block A !‘ *_ Example 8-bit:
aal T 0 =L_ayer 1 shifts by 0, 4
=Layer 2 shifts by 0, 2

8-bit right shifter D =Layer 3 shifts by O, 1

J’\'r Jl\b ‘\ﬁ JI\‘ l\‘ A'\: ‘\I -\"
|

| I | | | | |
.‘.“-bl 1':I.“..“."'\ 1“7.‘-| “T-~h| “7""| “T.‘hhi “E:-~h| “T‘""| ‘\]

5‘: "I ,‘n

.] | |

—:__-“‘ T — \
_l _I _l ! _Iu - _! h‘
Loopyr opgt opjt opgr opjt opgr opgrt oo
* 'T- * * * *'

R, R, Re R, R, R, R, R,

=Large barrel shifters can be constructed using:
®Layers of multiplexers
*2 - dimensional array circuits designed at the electronic level

