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Instruction Set Architecture (ISA) for '
Simple Computer (SC)

= |nstructions are stored in RAM or ROM as a program, the
addresses for instructions are provided by a program
counter (PC)
® Count up or load a new address
® The PC and associated control logic are part of the Control Unit

= A typical instruction specifies:

® Operandsto use
® Operation to be performed
® Where to place the result, or which instruction to execute next

= Executing an instruction
® Activate the necessary sequence of operations specified by the
instruction
® Be controlled by the control unit and performed in:
= datapath

= control unit
= external hardware such as memory or input/output




Example ISAs

= RISC (Reduced Instruction Set Computer)
Digital Alpha

Sun Sparc

MIPS RX000

IBM PowerPC

HP PA/RISC

= CISC (Complex Instruction Set Computer)
* Intel x86
® Motorola 68000
* DEC VAX

= VLIW (Very Large Instruction Word)
¢ Intel ltanium




ISA: Storage Resources

"Harvard architecture®:

Separate instruction and
data memories

Permit use of
single clock cycle per
instruction implementation

Due to use of "cache" in
modern computer
architectures, it is a fairly
realistic model

Instruction
memory

215x16

Program counter

(PC)

Data
memory

215x16

Register file
8 X16




ISA: Instruction Format

= The three formats are: Register, Inmediate, and Jump/Branch

15 9 8 6 5 3 2 0
Destination Source regy Source reg-
Opcode register (DR) ister A (SA)| ister B (SB)

(a) Register
15 9 8 6 5 3.2 0
Opcods Derinetion) Sewreq5eg] operand (op

(b) Immediate
15 9 8 6 5 3 2 0
Ml Sarre] M)

(c) Jump and Branch

= All formats contain an Opcode field in bits 9 through 15.
®* The Opcode specifies the operation to be performed




ISA: Instruction Format - Register

15 9 8 6 5 32 0
Destination| Sourcereg{ Sourcereg-
Opcode - g3 e
register (DR) ister A (SA)| ister B (SB)

(a) Register
= This format supports:
°*R1<—~R2+R3
* R1<slR2
= Three 3-bit register fields:
® DR - destination register (R1 in the examples)
® SA - the A source register (R2 in the first example)

® SB - the B source register (R3 in the first example and R2 in the
second example)

= Why is R2 in the second example SB instead of SA?




ISA: Instruction Format - Immediate

15 9 8 6 5 a2z 0

Destination Source reg-

Opcods register (DR)| ister A (SA) |OPerand (OP)

(b) Immediate

= This format supports:
*R1<—R2+3
= The B Source Register field is replaced by an Operand field OP
specifying a constant. (3-bit constant, values from 0 to 7)
= The constant:
¢ Zero-fill (on the left of) the operand to form 16-bit constant
® 16-bit representation for values 0 through 7




ISA: Instruction Format — Jump & Branch

15 9 8 6 5 3 2 0

Address (AD)| Source reg-| Address (AD)
Opcode (Left) ister A (SA) (Right)

(c) Jump and Branch

= This instruction supports changes in the sequence of instruction
execution by adding an extended, 6-bit, signed 2’s-complement
address offset to the PC value

= The SA field: permits jumps and branches on N or Z based on
the contents of Source register A

= The Address (AD) field (6-bit) replaces the DR and SB fields

® Example: Suppose that a jump for the Opcode and the PC contains
45 (0...0101101) and AD contains — 12 (110100). Then the new PC
value will be:
0...0101101 + (1...110100) = 0...0100001 (i.e., 45+ (— 12) = 33)




ISA: Instruction Specifications

Status
Instruction Opcode Mnemonic Format Description Bits
Move A 0000000 MOVA RD .RA R[DR] < R[SA] N, Z
Increment 0000001 INC RD.RA R[DR] <« R[SA] +1 N, Z
Add 0000010 ADD RD,RA.RB R[DR] <« R[SA] +R[ SB] N Z
Subtract 0000101 SUB RD.RA.RB R[DR] <-R[SA] - R[SB] N, Z
Decrement 0000110 DEC RD.RA R[DR] < R[SA] —1 N, Z
AND 0001000 AND RD.RA.RB R[DR] < R[SA] AR[SB] N,Z
OR 0001001 OR RD.,RA,RB R[DR] <« R[SA] v R[SB] N, Z
Exclusive OR 0001010 XOR RD.RA.RB R[DR] « [SA] ® R[SB] N, Z
NOT 0001011 NOT RD.RA R[DR] <« R[SA] N, Z
Move B 0001100 MOVB  RD.RB R[DR] <« R[SB]
Shift Right 0001101 SHR RD,RB R[DR] <« sr R[SB]
Shift Left 0001110 SHL RD.,RB R[DR] <« sl R[SB]
Load Immediate 1001100 LDI RD, OP R[DR] <« zf OP
Add Immediate 1000010 ADI RD.RA,OP R[DR] « R[SA] +zf OP
Load 0010000 LD RD.,RA R[DR] <~ M[R[SA]]
Store 0100000 ST RA,RB M[R[SA]]< R[SB]
Branch on Zero 1100000 BRZ RA,AD if (R[SA]=0)PC < PC +se AD
Branch on Negative 1100001 BRN RA.,AD if (R[SA]< 0) PC <~ PC +se AD
Jump 1110000 JMP RA PC <~ R[SA ]




ISA:Example Instructions and Data in
Memory

Memory Representation of Instruction and Data

Decimal Decimal
Ad dress Memory Contents Opcode Other Field Operation
25 0000101 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 « R2 -R3
35 0100000 000 100 101 32 (Store ) SA:4, SB:5 M[ R4] <~ R5
45 1000010 010 111 011 66 (Add DR: 2,SA:7,0P:3 R2<«< R7 +3
Im mediate)
55 1100000 101 110 100 96 (Branch AD: 44, SA:6 IfR6 = 0,
on Zero) PC « PC - 20
70 0000000 001100 000 Data = 192. After execution of instructionin 35,

Data = 80.
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The Control Unit

= Datapath: the Data Memory has been attached to the Address
Out, Data Out, and Data In lines of the Datapath.

= Control Unit:

® The MW input to the Data Memory is the Memory Write signal from
the Control Unit.

The Instruction Memory address input is provided by the PC and its
instruction output feeds the Instruction Decoder.

Zero-filled IR(2:0) becomes Constant In

Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC.
The PC is controlled by Branch Control logic




Program Counter (PC) Function

= PC function is based on instruction specifications involving
jumps and branches:

Branch on Zero BRZ if (R[SA] =0) PC © PC + seAD
Branch on Negative BRN if (R[SA] <0) PC = PC + seAD
Jump JMP PC ©— R[SA]

® The first two transfers require addition to the PC of:
= Address Offset = Extended IR(8:6) || IR(2:0)

® The third transfer requires that the PC be loaded with:
= Jump Address = Bus A = R[SA]

= In addition to the above register transfers, the PC must
implement the counting function:

* PC« PC+1




PC Function (Contd.)

= Branch Control determines the PC transfers based on
five inputs:
®* N,Z — negative and zero status bits
® PL — load enable for the PC
® JB - Jump/Branch select: If JB = 1, Jump, else Branch

® BC — Branch Condition select: If BC = 1, branch for N = 1, else
branchforZ =1.

PL. JB BC | PC Operation
Count Up

Jump

Branch on Negative (else Count Up)

- et | == | O
olo|—=~| X
o=~ X|[X

Branch on Zero (else Count Up)




Instruction Decoder

= Converts the instruction into the signals necessary to
control the computer during the single cycle execution,
combinational

® Inputs: the 16-bit Instruction
® Qutputs: control signals
= DA, AA, and BA: Register file addresses (IR (8:0))
® simply pass-through signals: DA = DR, AA = SA, and BA = SB
= FS: Function Unit Select
= MB and MD: Multiplexer Select Controls
= RW and MW: Register file and Data Memory Write Controls
= PL, JB, and BC: PC Controls

* Observe that for other than branches and jumps, FS =
IR(12:9)
® The other control signals should depend as much as possible on
IR(15:13)




Instruction Decoder (Contd.)

Truth Table for Instruction Decoder Logic

Instruction Bits

Control Word Bits

Instruction Function Type 15 14 13 9 MB MD RW MW PL JB BC
1. Function unit operationsusing 0 0 0 X 0 0 1 0 0 X X
registers

2. Memory read 0 0 1 X 0 1 1 0 0 X X
3. Memory write 0 1 0 X 0 X 0 1 0 X X
4. Function unit operationsusing 1 0 0 X 1 g 1 W A X X
register and constant

5. Conditional branch on zero (Z) 1 1 0 0 X X 0 0O 1 0 0
6. Conditional branch on negative 1 1 0 1 X X 0 ¢ 1 40 3
%nconditional Jump 1 1 1 X X X ¢ 0 1 1 X




Instruction Decoder (Contd.)

= |nstruction types are based on the control blocks and
the seven control signals to be generated (MB, MD,
RW, MW, PL, JB, BC):

® Datapath and Memory Control (types 1-4)
= Mux B
* Memory and Mux D

® PC Control (types 5-7)
= Bit15=Bit14=1=> PL
= Bit 13 => JB.
* Bit 9 was use as BC which contradicts FS = 0000 needed for

branches. To force FS(0) to O for branches, Bit 9 into FS(0) is
disabled by PL.




Instruction Decoder (Contd.)

= The end result by use of the types, careful assignment of codes,
and use of don't cares, yields very simple logic:

| ‘uction
DR
9 86

) Opcode SA SB
= This completes the 41312 11 1 53 20
design of most of the .
essential parts of
the single-cycle
simple computer
117 | 1644 | 1341 | 10 926 5 & |2 L [0
DA AA BA |MHBH FS |MD RW M\YPL JB| BC

Control word




Example Instruction Execution

Six Instructions for the Sirgle-Cycle Computer

Operation Symbol ic

code name Format Description Func tion MB MD RW MW PL JB BC

1000 010 ADI Imme diate A dd immediate R[DR] <« R[SA +zfI(220) 1 0 1 0 0 0 O
operand

0010 000 LD Register Load mem ory RIDR] « MR [SA o 11 0 0 1 0O
contentinto
register

0100 000 ST Register Store re gister MR [SA <« R[sH 01 0 1 0 0 O
conten tin
memory

0001110 SL Register Shift left R[DR] <« sIR[SH 0o 0 1 0 0 1 0

0001011 NOT Register Comple ment R[DR] « R[SA 0 0 1 0 0 0 1
register

1100 000 BRZ  Jump/Branch If R[SA] =0,branch IfR[ SA]=0, 1 0 0 0 1 0 0

toPC +seAD PC « PC + se AD,
IFR[S A]#0, PC « PC + 1

= Decoding, control inputs and paths shown for
ADI, LD and BRZ on next 6 slides




Decoding for ADI

Instruction

10 OOpQ'.od[t}' B DR SA SB
413 21&1 86 33 20
Y| Y Y
1917 | 1614 | 1311 | 10 96 5141312110
1/0010(0|1(0({0|0(0
DA AA BA ([MB FS |MDRWMWPL| JB| BC

Control word




NZzAa<

R(8:6) || IR(2:0)
[ pC Control Inputs and
Paths for ADI
Address
Instructi 1 |
memory RW — 3
.- DA — Redister
ncrement AA—| qTep L pa
. IRL?'”@ _Constant
Instruction decoder L 0
P ~—MB1
Address out
Bus1 Bus B ¢ 0—+— No
MW Tt
DEAVINENTEE  ohio kb
Datain Addres
120 10000 |5
b v . Data
< c~—|  Function memory
< t
N=—
Z~—] %
0OMD 1
LBus D

DATAPATH




Decoding for LD

Instruction
00 1012‘.0(1% 00 DR SA SB
413 21&1 8-6 33 20
1997 | 1644 | 1311 | 10 96 5|1 4|3 |2 10
0/0000/1]1(0/0|1]0
DA AA BA |MB FS |MD RWMWPL| JB| BC

Control word




NZN<

< BA

]R(S:G) | IR(2:
Branch PC
ontro
PIB Address
[Ii‘BC Instructio|
10 memory
lr Instructio)
Increment
PC !
T
Instruction decoder
DBAMFMRMP
AAABSDWWL
0=1 1
= OOr
=
—]

10

Control Inputs and Paths for LD

*l

1MD—|4,
D 1

DATAPATH

MUXHE MBO
Address out
o T Tyom
Bus B ®)ita out 0 : —> No Write
I\-&W
B Datain Adfres
Function m?::lt;.v
unit s




Decoding for BRZ

T 5D 0 (}n truction
Opmge DR SA SB
5141312 1|.I_ 1 86 53 240
1917 | 1614 | 1311 | 10 96 Sl 4| 32X .0
1/0000(0/0(0/1(0]|0
DA AA BA |MB FS |MD RWMWPL| JB|BC

Control word




-

)

@R(S:G) || IR(2:

Control Inputs and Paths for BRZ

No Write
0 }

RW — D
DA — Register
AA— Adlen L py
Constant
in
10
vMux g~ MB1
Address out
BusA |BusB 0—r No Write
D t
b
%g—o-» B Datain Addres
v . Data
c«~— [Fuyction memory
lj Datao
Data in
OMD—>{, > L
Bus D

DATAPATH




Abstract View of Critical Path

* Register file and ideal memory:
* The CLK input is a factor ONLY during write operation
» During read operation, behave as combinational logic:
- Address valid => Output valid after “access time.”
Critical Path (Load Operation) =
PC’s Clk-to-Q +
Instruction Memory’s Access Time +

_ Register File’s Access Time +
puction ALU to Perform a 32-bit Add +

Ideal
Instruction
Memory

Ri Imm Data Memory Access Time +
5 16 Setup Time for Register File Write +
[nstruction 4 Clock Skew

Address

Data
Address

32

Data
Memory

Data

(\'c xt A tldrcs;
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Single-Cycle Computer Issues

= Shortcoming of Single Cycle Design
® Complexity of instructions executable in a single cycle is
limited
® Accessing both an instruction and data from a simple single
memory impossible

® A long worst case delay path limits clock frequency and the
rate of performing instructions

= Handling of Shortcomings

® The first two shortcomings can be handled by the multiple-
cycle computer

® The third shortcoming is dealt with by using a technique
called pipelining described in later lectures



Multiple-Cycle Computer

= Converting the single-cycle computer into a
multiple-cycle computer involves:
® Modifications to the datapath/memory
® Modification to the control unit

® Design of a multiple-cycle hardwired control




. TR(8:6) || IR(2:0)
C—~>Branc
N~ Contr - L
Z—l-r
| T —
PJB Address
LBC Instruction
memory RW— D
Instruction DA—> Rel%l ster
AA— A "B [~ BA
TR(2:0)- 2L I s tant
Instruction decoder m lr 0
Mux g~ MB
Address out
Bus A Bus B
Datao tI\{W
DB ’_[ F I RMPJB \
A A SDWWLBC FS A B Datain Addres
CONTROL |
A% Functi Data
C~— unction memory
N unit *
7z Data out |
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Single-Cycle SC
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Data path . New Instruction
Modifications

Path

L

b

' D
Use a smgle_ memory for Y R
both instructions and DR 2 ba 18x18

Register Reqister
data ac:zree‘.s eg:

ss ogic .
= Requires new MUX M i( t 12
with control signal MM to
select between the
instruction address from
the PC and the data
address

Inst. & Data
Zero fill i Address Mux

= Requires path from
Memory Data Out to the
instruction register in the
control unit

Dabain |

\

Inst. & Data
DATAPATH Memory




Datapath Modifications (Continued)

= Additional registers needed to hold operands
between cycles

® Add 8 temporary storage registers to the Register File

= Register File becomes 16 x 16

= Addresses to Register File increase from 3 to 4 bits
® Register File addresses come from:

= The instruction for the Storage Resource registers (0 to 7)

= The control word for the Temporary Storage registers (8 to 15)
® Add Register Address Logic to the Register File to

select the register address sources

= Three new control fields for register address source selection
and temporary storage addressing: DX, AX, BX
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Control Unit Modifications

Must hold instruction over the multiple cycles to
draw on instruction information throughout
Instruction execution

® Requires an Instruction Register (IR) to hold the
instruction
= Load control signal IL

® Requires the addition of a "hold" operation to the PC
since it only counts up to obtain a new instruction
= New encoding for the PC operations uses 2 bits




Extend
— 3
PSS PC
Add "hold"
I Dperation
¥
s RW. o
Instruction DR 4] - -,;-DA 18 x 18
Register IR ) Sh-gnl soess| | o
logic
\ ¥ 55 = mrfAa g B
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Sequential Control Design

= To control microoperations over multiple cycles, a Sequential
Control replaces the Instruction Decoder
* Input: Opcode, Status Bits, Control State
® Output:
= Control Word (Modified Datapath Control part)
= Next State: Control Word (New Sequencing Control part)

® Consists of:
= Register to store the Control State

= Combinational Logic to generate the Control Word (both
sequencing and datapath control parts)

®* The Combinational Logic is quite complex so we assume that
it is implemented by using a PLA or synthesized logic and
focus on ASM level design
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Control Word

27 2423222120 1716 1312 98 7 43210

I M M| RMM

NS PS L DX AX BX B FS p [winvilwi
Sequencing Datapath

= Datapath part: field MM added, and fields DX, AX, and BX
replace DA, AA, and BA, respectively

® Ifthe MSB of afield is 0, e.g., AX = 0XXX, then AAis 0
concatenated with SA (3bits) field in the IR

® Ifthe MSB of afield is 1, e. g. AX=1011, then AA= 1011
= Sequencing part:

® IL controls the loading of the IR

® PS controls the operations of the PC

® NS gives the next state of the Control State register

= E.g., NSis 4 bits, the length of the Control State register - 16 states are
viewed as adequate for this design




Encoding for Datapath Control

DX AX BX Code| MB Code FS Code; MD RW MM MW Code
R[DR] R[SA] R[SB] 0XXX| Register 0 [ F« 4 0000 FnUt No Address No 0
write Out write
R8 R8 RS 1000 |Constant 1 F«—A4+1 0001 DataIn Write PC Write 1
R9 R9 RY9 1001 F<—A+B 0010
R10 R10 R10 1010 Unused 0011
R11 R11 R11 1011 Unused 0100
R12 R12 R12 1100 F—A+B+1 0101
R13 R13 R13 1101 F—A-1 0110
R14 R14 R14 1110 Unused 0111
R15 R15 R15 1111 F<—AAB 1000
F<—AVE 1001
F—A®B 1010
FeAa 1011
F<~—B 1100
F «—srB 1101
F «<slB 1110
Unused 1111

14




Encoding for Sequencing Control

NS PS IL

Next State Action Code Action Code

Gives next state Hold PC 00 Noload 0
of Control State Inc PC 01 Load instr. 1
Register Branch 10

Jump 11

15




ASM Charts for Sequential Control

* An instruction requires two steps:
® Instruction fetch — obtaining an instruction from memory

® Instruction execution — the execution of a sequence of
microoperations to perform instruction processing

® Due to the use of the IR, these two steps require a minimum
of two clock cycles

= |SA: Instruction Specifications and ASM charts for
the instructions (that all require two clock cycles)
® A vector decision box is used for the opcode
® Scalar decision boxes are used for the status bits

16




ISA: Instruction Specifications (for
reference)

Instruction Specifications for the Simple Computer - Part 1

Instruction

Opcode Mnemonic

Format

Description

Status
Bits

Move A
Increment
Add

Subtract
Decrement
AND

OR

Exclusive OR

NOT

0000000 MOVA
0000001 INC
0000010 ADD
0000101 SUB
0000110 DEC
0001000 AND
0001001 OR
0001010 XOR

0001011 NOT

RD.RA
RD.RA
RD.RA.RB
RD.RA.RB
RD.RA
RD.RA,RB
RD.,RA,RB
RD.RA,RB
RD.RA

R[DR] <« R[SA]

R[DR] <« R[SA] +1
R[DR] < R[SA] +R[ SB]
R[DR] < R[SA] - R[SB]
R[DR] « R[SA] -1
R[DR] < R[SA] AR[SB]
R[DR] < R[SA] v R[SB]
R[DR] < R[SA] @ R[SB]
R[DR] < R[SA]

N, Z
N,Z
N, Z
N, Z
N, Z
N, Z
N, Z
N, Z
N,Z




ASM Chart for Two-Cycle INF |

Instructions - Part 1 CP:@ IR  M[PC]
EXO0
_< )
R[DR]| R[SA]/ /\
@)R]*t—R[SA@- oo
_GIDRL— R[Sm .ﬁ]ﬁ: Opcode

+ Rlsy 0001010

(RIDR]  R[SA]
\\+ R[SB] + 1
)

@DR] «— R[SA]

A R|SB

@DRI CRisal ) s
Vv R[Sy

. G[DR] — R[S%
@ R[SB]
{R[DR] «— R[SA]\
)

<




ISA: Instruction Specifications (for
reference)

Instruction Specifications for the Simple Computer - Part 2

Status

Instruction Opcode Mnemonic Format Description Bits
Move B 0001100 MOVB  RD.RB R[DR] « R[SB]

Shift Right 0001101 SHR RD,RB R[DR] <« sr R[SB]

Shift Left 0001110 SHL RD.RB R[DR] <« sl R[SB]

Load Immediate 1001100 LDI RD, OP R[DR] <« zf OP

Add Immediate 1000010 ADI RD.RA,OP R[DR] « R[SA] +zf OP

Load 0010000 LD RD.,RA R[DR] < M[SA]

Store 0100000 ST RA,RB M[SA] < R[SB]

Branch on Zero 1100000 BRZ RA,AD if (R[SA]=0)PC < PC +seAD
Branch on Negative 1100001 BRN RA,AD if (R[SA] < 0)PC < PC +seAD
Jump 1110000 TMP RA PC <~ R[SA |

19




ASM Chart for
2-Cycle Instruc-
tions - Part 2

= Portion in Red
duplicated from
previous ASM
chart

{ INF

IR —M][PC]

v EX0

N

0001100

(PC—<PC+1
1

0010000

0100000

1001100

1000010

Opcode

1100000

1100001

111000

<

(RiD \
[IDR]<MIR[SA]]
NGl U

R[DR] — R[SB]

@DR] —zf

\

@R[SA]] —Rl

o)~
=)-

=

R[DR] — R[SA]
+ zf OP

_ﬂ<;>

< PC«— R[SAD—

To INF

&

PC—PC + segf

Chapter 10 Part2




State Table for 2-Cycle Instructions

Inputs Outputs
State Next  — — o I
st ate I P M M R MM
Opcode VCNZ L S DX AX BX B FS D W MW Comme nfs
INF X XXX EXO0 I 00 XXX XXX XX X XX X 0 1 0 IR < M[PC]
EXO0 0000000 XX INF 0 0l OXXX 0XXX XXX X 0000 0 1 X 0 |MOVA [R[DR] < R[SA]*
EX0 0000001 XXX INF 0 01 OXxXX 033X XXX X 0001 0 1 X 0 |INC R[DR] < R[SA] + 1*
EX0 0000010 XXX INF 0 01 OXXX O0XXX 0XXX 0 0010 0 1 X O |ADD |[R[DR] < R[SA]+ R[SB]J*
EXO0 0000101 XXX INF 0 0l OXXX XX 0XxXX 0 0101 0 I X O |SUB R[DR} <~ R[SA] + R[SB]+ 1*
EXO0 0000110 XXX INF 0 01 OXxXX 0 XXX X 0110 0 1 X 0 |DEC R[DR] < R[SA] +(-1)*
EXO0 0001000 XXX INF 0 01 OXxXX 0xXX 0x3xX 0 1000 0 1 X 0 |AND R[DR] < R[SA] ~ R[SB]*
EXO0 0001001 XX INF 0 01 0xxX 033X 03X 0 1001 0 I X O |OR R[DR] <+ R[SA] V R[SB]*
EXO0 ooolol10 XXX INF 0 01 OXXX 0XXX 0XXX 0 1010 0 I X 0 [XOR R[DR] < R[SA] @ R[SB]*
EXO0 0001011 XXX INF 0 01 OXxXX 03X XXX X 1011 0 1 X 0O |NOT R[DR] <~ R[SA]*
EXO0 0001100 X0 INF 0 0l OXXX XXX 00X 0 1100 0 I X 0 |MOVB |R[DR] < R|[SB]*
EXO0 0010000 XXX INF 0 01 OXXX 03X XX X XxXxxX 1 1 0 0o|LD R[DR] « M[R[SA]]*
EXO0 0100000 XXX INF 0 01 XXX XX XXX 0 XXX X 0 0 1|sT M[R[SA]] < R[SB]*
EXO0 1001100 XXX INF 0 0l OXxXX XXX XXX 1 1100 0 1 0 0 |LDI R[DR] < zf OP*
EXO0 1000010 XXX INF 0 01 OXxXX 00X XXX 1 0010 0 1 O O |ADI R[DR] < R[SA] + zf OP*
EXO0 1100000 X1 INF 0 10 XXX 03X XXX X 0000 X 0 0 O|BRZ PC «—PC +se AD
EXO0 1100000 X0 INF 0 01 XXX 033X XXX X 0000 X 0 0 O|BRZ PC «—PC + 1
EXO0 1100001 XXIX INF 0 10 XXX XX XXX X 0000 X 0 0 0 |BRN PC <« PC +se AD
EXO0 1100001 XX  INF 0 01 XXX 00X XXX X 0000 X 0 0O O |BRN PC —PC + 1
EXO0 1110000 XXX INF 0 11 XXX XX XXX X 0000 X 0 0 O0|IMP PC < R[SA]

" For this state and input combinations, PC € PC+1 also occurs

21




3-Process ASM VHDL Code

entity controller is
Port ( opcode : in std logic vector(6 downto 0);
reset, clk : in std logic;
zero, negative : in std logic;
I, MB, MD, MM, RW, MW : out std logic;
PS : out std logic vector(l downto 0);
DX, AX, BX, FS: out std logic vector(3 downto 0);
);

end controller;

architecture Behavioral of controller is
type state type is (RES, FTH, EX);
signal cur_state, next state : state type;
begin
state register:process(clk, reset)
begin
ifireset="'1") then
cur_state<=RES;
elsif (clk'event and clk='1") then
cur state<=next state;
end if;
end process;

22



3-Process ASM VHDL Code

out func: process (cur state, opcode, zero, negative)
begin
(IL,PS, MB, FS, MD, RW, MW, MM) <=sstd logic vector'(0x"000");
FS<="0000":
case cur_state is
when RES =>
next state <= FTH;
when FTH =>
-- set the control vector values
next state <= EXE;
when EXE =>
case opcde is:
when “0000000” +>

end process;

End Behavioral;




ASM Chart for Multiple
Bits Right Shift

= R8 - used to perform shifts

= R9 — used to store and
decrement shift count

= Zerotestin EX1is to

determine if the shift amount Em
is 0; if so, goes to state INF <>

/\ |: PC— PC+1 )
0001107
Opcode R[DR] — R8

24




State Table For Multiple Bits Right Shift

Inputs Outputs
State :tr:i T ; Comments
Opcode VCNZ L Ps DX AX BX MB FS MD RW MM W

EXO0 0001101 XX0 EXI1 0 00 1000 OxXX XXX X 0000 O 1 X 0 SRM RS‘—R[SA].E: —EXI1
EXO0 0001101 XXX INF 0 01 1000 OXX XXXX X 0000 O 1 X 0 SRM RE8<R[SA],Z: 7 INF*
EX1 0001101 XX0 EX2 0 00 1001 XX XXXX 1 1100 O 1 X 0 SRM RO« zf OP,Z : ~EX2
EXI1 0001101 XxX1 INF 0 01 1001 XXX XXX 1| 1100 O 1 X 0 SRM R9«—zf OP.Z: " INF*
EX2 0001101 XXX EX3 0 00 1000 XX 1000 O 1101 0 1 X 0 SRM RB «—sr RE,TEX3
EX3 0001101 XX0 EX2 0 00 1001 1001 XXX X 0110 O 1 X 0 SRM RO« RO - l,f:"EXZ
EX3 0001101 X1 EX4 0 00 1001 100l XXX X 0l10 O 1 X 0 SRM R9«—RO- 1.Z:7EX4
EXA4 0001101 XX INF 0 0L O 1000 XXX X 0000 O 1 X 0 SRM R[DR] < R8,* INF*

* For this state and input combinations, PC € PC+1 also occurs
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Sequential Circuits

s Consist of a combinational circuit to which

storage

elements are connected to form a feedback path
= Specified by a time sequence of inputs, outputs,

and internal states

= Two types of sequential circuits:
= Synchronous
= Asynchronous

Inputs ——» A

primary difference

Combinational /
circuit
»{ Memory

-
>

» Outputs

\ elements /
_“""'--———-"'-’r

Fig. 5-1 Block Diagram of Sequential Circuit

9-3




Synchronous vs. Asynchronous

T, — —

= Asynchronous sequential circuits nogu 72— 5t o
= Internal states can change at any | s T
instant of time when there is a = e
change in the input variables S’ | ey

I‘Ipﬂ-lznl . ' (pext stase)
kale ) : :

= No CMSignal is mviﬂggmhronous Circuits 7 T ot
= Have better performance but hard to

design due to timing problems o B |+

| Delay
t » Cutputs .

Inputs ———

Combinational
circuit

P

-

S g T = Synchronous sequential circuits
= Synchronized by a periodic train
) Bl g of clock pulses

I sini = [—L = Much easier to design

(b} Timing diagram of clock pulses (prEferrEd dESig n Style) 9-4

Delay  ==-




Why Asynchronous Circuits ?

Used when speed of operation is important

= Response quickly without waiting for a clock pulse
Used in small independent systems

= Only a few components are required

Used when the input signals may change
independently of internal clock

= Asynchronous in nature

Used in the communication between two units
that have their own independent clocks

= Must be done in an asynchronous fashion

9-5




Definitions of Asyn. Circuits

III
= Inputs / Outputs

= Delay elements: nop 52 > 5 oo

« Only a short term memory e i

= May not really exist due to N =

original gate delay :T;, n_ ] 7 :'“ﬂ

= Secondary variable: B | n

« Current state (small y) | |
= Excitation variable: =2

= Next state (big Y) - =

« Have some delay in [ Detay Jo
response to input changes

9-6




Operational Mode

|
= Steady-state condition:

= Current states and next states are the same
« Difference between Y and y will cause a transition

= Fundamental mode:
« No simultaneous changes of two or more variables

« The time between two input changes must be longer
than the time it takes the circuit to a stable state

= The input signals change one at a time and only
when the circuit is in a stable condition

9-7
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Transition Table

I
= Transition table is useful to analyze an

asynchronous circuit from the circuit diagram

= Procedure to obtain transition table:
1. Determine all feedback loops in the circuits
2. Mark the input (y;) and output (Y;) of each
feedback loop
3. Derive the Boolean functions of all Y’s
4. Plot each Y function in a map and combine all
maps into one table

5. Circle those values of Y in each square that are

equal to the value of y in the same row
9-9




feedback

¥y

Y,

F2

feedback

D—D*

i >
inputs >
iy ny =7
‘ oo| o 0 oo o 1 00 | (o0 _j 01
current ol 1 | 0 o 1 | 1 or| 1 |(o1)
states 1| 1 ! 1| 1 0 | (n)| 1w
10| o | w|l o | o (10) o [(10
(a) Map for (b) Map for (¢) Transition table
Yi=xy+x'y Va=xy'1+x'y;

| An Example of Transition Table

= Xy; + XYy,

Y, = xy'; + XYy,

: /—9Y=Y1Y2

stable !

9-10




State Table

I = When input x changes from 0 to 1 while y=00:
= Y changes to 01 - unstable

= Yy becomes 01 after a short delay - stable at the second row

= The next state is Y=01
= Each row must have at /east one stable state

= Analyze each state in this way can obtain its state table

Yiyz
00

01

10

{¢) Transition table

0

" 4

N
LU |

11

=

;ll:l

00

f
|
'.\_ ']

Present
State

Next State

X=0

X=1

- = 0 O
-0 = O

= 0O = O

= O = O

= = O O

o O = =

YiYX -
total state

4 stable
total states:
000,011,
110,101

9-11




Flow Table

= Similar to a transition table except the states are
represented by /etter symbols

= Can also include the output values
= Suitable to obtain the logic diagram from it
= Primitive flow table:

x

only one stable g 1

. N Xyx
State "1 eaCh row a {:{) b 00 01 : 2“ 10
(ex: 9'4(3)) sl ¢ ;\B‘\} a [(@)0|(@)0|@ 0| b,0
—
c r\‘;’} d bla,0a,0|(®)1|(®)0
% R F s (b) Two states with two

qu"\'alent to 9'3((:) if d| a ‘\ffjj inputs and one output

a=00, b=01, c=11, d=10 |
(a) Four states with
one input 9-12




Flow Table to Circuits

= Procedure to obtain circuits from flow table:
= Assign to each state a distinct binary value
(convert to a transition table)
= Obtain circuits from the map
= Two difficulties:
= The binary state assignment (to avoid race)
= The output assigned to the unstable states

Ex: from the flow table 9-4(b) N ==
00 n:nx:ﬂ 10 0 “Ir:n” 10 : _f_._[>._ )

¥ ¥

(0)|(0)|(0)] 1 o| o 0 0 0 ___i::::}———-Y

o | o |(1)|(1) 1lo]l o] 1] o ] )
o - v

(a) Transition table (b} Map for output
¥=xpx's+ xv I=xmy {¢) Logic diagram

9-13




Race Conditions

4] 1 1] 1
yir: yiri

st u wl@| = Race condition:

1" (or) = two or more binary state variables
will change value when one input
variable changes

y ! * i, = Cannot predict state sequence if
(a) Possiblle transitions: (b Possible transitions: unequal delay is encountered

o =ntt 0 S = Non-critical race:
g i ] = The final stable state does not

| ()| 1 o|(o0)| n depend on the change order of

& = ” ” state variables

i T . 1] #—= Critical race:

. = e « The change order of state variables

R =, will result in different stable states

T « Should be avoided !

i = [} (K] == |0 9'14




Race-Free State Asmgnment

B
= Race can be avoided by proper

state assignment

« Direct the circuit through
intermediate unstable states with
a unique state-variable change

« Itis said to have a cycle
= Must ensure that a cycle will
terminate with a stable state
« Otherwise, the circuit will keep
going in unstable states
= More details will be discussed in
Section 9-6

0

iy
00 ILIJ'

al

¥1¥2
00

00 | 01

10

10

10)

10

(a) State tra

R&iTi

00— 01 = 11 -+ 10

yi¥

x
0 l

on: (b} State transition:

00— 01 -+ 11

2
00 :_m: 01
1] 11
11 10
10 0l
(c) Unstable

=0 =11 =10

9-15




| Stability Check

= Asynchronous sequential circuits may oscillate
between unstable states due to the feedback

= Must check for stability to ensure proper operations

= Can be easily checked from the transition table

= Any column has no stable states > unstable

« Ex: when x,x,=11 in Fig. 9-9(b), Y and y are never the same

X1

X2

Y =x')x + Xy

*1 X2

1>
—

(a) Logic diagram

)

00 01 11 10
f”“\ {““H
g \E) 1 1 \E )

J-’l”.“\\.
o [(1)] o | o

b ition tab
(b) Transition table 9-16
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Latches in Asynchronous Circuits

B
= The traditional configuration of asynchronous

circuits is using one or more feedback loops
= No real delay elements

= It is more convenient to employ the SR latch as
a memory element in asynchronous circuits

= Produce an orderly pattern in the logic diagram with
the memory elements clearly visible

= SR latch is also an asynchronous circuit

« Will be analyzed first using the method for
asynchronous circuits

9-18




SR Latch with NOR Gates

R

§ R 0 Q'
1 0 ! 0
T 0 0 1 0  (After SR = 10)
— 0 1 0 1
0 0 0 1 (After SR = 01)
g 2 e 1 1| 0 0
(a) Crossed-coupled circuit (b) Truth table
SR

01 11 10

’ il L normal mode

00
y
(D e T ] st
'ﬁl I

g N 0 @ N1 1 | should not be used
¢ feedback 1{(1

D ®
Y=8R'+RY
Y =§+RywhenSR=0—%* ghould be carefully

~~| =SR=0is
(c) Circuit showing feedback (d) Transition table checked first 9-19




‘ SR Latch with NAND Gates

T

(a) Crossed-coupled circuit

5 B
R—D— —

T

(c) Circuit showing feedback

S R Qo Q'

1 0 0 1

1 1 0 ] (After SR = 10)

0 1 1 0

i i i 0 (After SR = 01)

0 0 1 1

(b) Truth table
SR
a0 01 11 10
7|7 |5=0, R=0 (SR = 1)
1 1 e
— | | should not be used

~ 1~ —SR' =0is
(1 1)[(1)] o

W) normal mode

Y=584+RywhenS'R' =

(d) Transition table

S should be carefully
checked first 4.5




Analysis Procedure

|
= Procedure to analyze an asynchronous
sequential circuits with SR latches:

1. Label each latch output with Y, and its external
feedback path (if any) with y,

2. Derive the Boolean functions for each S, and R,

3. Check whether SR=0 (NOR latch) or SR’=0
(NAND latch) is satisfied

4. Evaluate Y=S+R'y (NOR latch) or Y=S'+Ry
(NAND latch)

5. Construct the transition table for Y=Y,Y,...Y,
6. Circle all stable states where Y=y

9-21




X

Analysis Example

$;=X;y, Ry=x';x’, = §;R; = x;y,x';x’;, = 0 (OK)
S,=x;X, R,=x,y;, = S,R, = x;x,x,y, = 0 (OK)

Ry

= o o
L_\___‘ e

-

Y;=S; + Ry,
=X,Y, + (X;+X,)y,
=X1Y2 X Y1 XY
Y,=S, + Ry,
=X;X; + (XYY,

feedback”’ L

> )
i

)

o

et )

§a

X ”
a1

e e
| 11
] > p

critical race !!

=X X+ XY, YY)
X1X2
00 11 10
®e]-[®
A

@ 1 11 11

00

4

®B|E|E)
)

9-22




Implementation Procedure

= Procedure to implement an asynchronous
sequential circuits with SR latches:

1. Given a transition table that specifies the excitation
function Y = Y,Y,...Y,, derive a pair of maps for
each S, and R, using the latch excitation table

2. Derive the Boolean functions for each S, and R,
(do not to make Si and Ri equal to 1 in the same minterm square)

3. Draw the logic diagram using & latches together
with the gates required to generate the S and R
(for NAND latch, use the complemented values in step 2)

9-23




Implementation Example

Excitation table: list the required S and R . -
for each possible transition from y to Y > —] >+
e \<f—f;
y 0 0 1 10 y Y |S R <G
0[(0)|(0)|(0)] 1 ¢ B %
2| KA (A o 1|1 o0
AN ~| ™ 1 0|0 1 Xz D—A):>Q7'_
o N AL L) I & | X A —D— &
?a}"@’ansilinn table (b) Latch excitation table (e) Circuit with NOR latch
| Y:“-Jt;]x'2+x1y
I Noag Xy
I X1Xg "‘x\ XXy > }} Y
, @0 0 1 10, 00 01 11 10
_—\._\‘ \ T
0 ;n o | o |1 S~o|(x| x| x| o0 ; —
-~ | | L VTN | e
i/ 1 L \
140, 0| x ||Xx th1,] 1) 0| O [__
1’ S J‘ X }_
(c) Map for § =xx', (d) Map for R =x"y R

y = 1 (outside) > 0 (inside) (f) Circuit with NAND latch
.. $=0, R=1 from excitation table 9-24




Debounce Circuit
I

= Mechanical switches are often used to generate binary
signals to a digital circuit
« It may vibrate or bounce several times before going to a final rest
« Cause the signal to oscillate between 1 and 0

= A debounce circuit can remove the series of pulses from a
contact bounce and produce a single smooth transition
= Position A (SR=01) - bouncing (SR=11) - Position B (SR=10)
Q=1 (set) > Q=1 (nochange) > Q = 0 (reset)

; DJ Q B

4 [
*,-{J j B -
’ ’__rf_:}_g_ﬁ—u

T‘gn . L}LQ. .

Gru_und A—»B ——  » A ——» 9-25
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Design Procedure

1. Obtain a primitive flow table from the given design specifications
2. Reduce the flow table by merging rows in the primitive flow table

3. Assign binary state variables to each row of the reduced flow to
obtain the transition table.

4. Assign output values to the dashes associated with the unstable states
to obtain the output map.

5. Simplify the Boolean functions of the excitation and output variables
and draw the logic diagram



Primitive Flow Table

* Design example: gated latch
* Two Input ( G = gate , D = Data).

* One output 1s Q , the gated latch is a memory element that;
» Accept the value of D when G=1
 Retain this value after G goes to 0 (D has no effects now)

 Obtain the flow table by listing all possible states.

* Dash marks are given when both inputs change simultaneously

* Outputs of unstable states are don’t care

Input Output
State D G Q Comments

a 0 1 0 D=Q because G=1
b 1] H 1] D=Q because G=1
[ 0 0 0 After statesa or d

d 1 0 0 After state ¢

e 1 0 1 After states b or f

f 0 0 1 After state e

DG
00 0l 11 10
[ ':_‘!.-In bl_ -
-,— | a, I':Ef], 1] e,
{_'E:::.n ﬂp_ T d|_
f, b,-|(e),1
'..:__,"] a, &




Reduce the Flow Table
I

= Two or more rows can be merged into one row if there are
non-conflicting states and outputs in every columns

= After merged intoonerow: , ., N
= Don’t care entries are al c-l@o]b.-]-. bi|<siz | wi JN]
overwritten = 1 Ji-llesle
= Stable states and output _ '

values are included d|e=|==[b=|@0] @) a-]|--]e.-

= A common symbol is given () States that ave coudidites for marahis

to the merged row - -
« Formal reduction procedure > e
is given in next section  “°¢["|@°| P[0 @ @O0 b0
bef (1] a,-|(b)1|(e) b ((B)1]| a,.-|(B)1](b)

{b) Reduced table (two alternatives)

9-29




Transition Table and Logic Diagram

oG = Assign a binary value to each state
00 0L 11 10 to generate the transition table
0 0 { 0 = a=0, b=1 in this example

= Directly use the simplified Boolean

Ll R[4 function for the excitation variable Y

@)Y =DG+Gy = An asynchronous circuit without latch is
produced
DG

00 ol 11 10 D }
0 0 1 0
1 0 1 1 G 'l>.o 3

9-30




Implementation with SR Latch

(b) Logic diagram

DG DG
00 01 11 10 00 o 11 10
¥ ¥
772 A
0 ] 4] | 1 | 0 0| X F(} 0 X
| X 0 l,\XJ.I X 1 0 LI ‘ i 0
- Listed according to
SRS Kope _ the transition table
a) Maps for Sand R v . ”
NP and the excitation
, p table of SR latch
> p—e—— QO
e
DD

9-31




Outputs for Unstable States

|
= Objective: no momentary false outputs occur when the

circuit switches between stable states

= If the output value is not changed, the intermediate
unstable state must have the same output value
= 0 > 1 (unstable) > 0 (X)

d/_\ R
. 0> 0 (unstable) >0 (0)  «|@.0 b, 5’ o (o)
=« If the output value changed, A
: : b|ec,-|®)o0 x| o
the intermediate outputs L
are don't care oV T
(9
= It makes no difference when D D
the output change occurs d | a—-|(d),1 X [ 1
(a) Flow table (b) Output assignment

9-32
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J State Reduction

= Two states are equivalent if they have the same output
and go to the same (equivalent) next states for each
possible input

Present | Next State | Output

« Ex: (a,b) are equivalent State | x=0 x=1|x=0 x=1
(c,d) are equivalent a C b 0 1
= State reduction procedure | P | d : 2 ;
is similar in both sync. & ; : R —

async. sequential circuits
= For completely specified state tables:
- use implication table
« For incompletely specified state tables:
- use compatible pairs



Implication Table Method (1/2)

= Step 1: build the implication chart

Present | Next State | Output
State | x=0 x=1|x=0 x=1
a d b 0 0
b @ a 0 0
C g f 0 1
d a d 1 0
a a d 1 0
f C b 0 0
g a e 1 0

b

c

d.e/| +— a=b iff d=e
b+c since outputs
X b 4 .
are not equivalent
x| % dand e are
L~
=1~ The same
x X v
c,e X
c,d X a.b P X
% X X |d,e/|d, e/ X

9-35




| Implication Table Method (2/2)

“'a Step 2: delete the node with unsatisfied conditions
= Step 3: repeat Step 2 until equivalent states found

s b /~ a=f because c»d equivalent states :

e L (a,b) (d.e) (d.g) (e.9)

. " #f because cxe % ~ 7

f ’/- d==e == g
4 7[ ‘~‘/ X Present | Next State | Output
. /K /} al State | x=0 x=1|x=0 x=1
+‘ J i [ a d a | 0 0
fle,dx ;:;;x % ¥ X C d f 0 1
- _—— d a d 1 0
s 7

#| x| x| xfdeelided]  x f c a | 0 o0

a b ¢ d e f *Reduced State Table* .35




Merge the Flow Table

I
= The state table may be incompletely specified

= Some next states and outputs are don't care

= Primitive flow tables are always incompletely specified
= Several synchronous circuits also have this property

= Incompletely specified states are not “equivalent”
« Instead, we are going to find “compatible states
« Two states are compatible if they have the same output
and compatible next states whenever specified
= Three procedural steps:
= Determine all compatible pairs
» Find the maximal compatibles

= Find a minimal closed collection of compatibles
9-37




Compatible Pairs

|
= Implication tables are used to find compatible states
« We can adjust the dashes to fit any desired condition

= Must have no conflict in the output values to be merged

0o 01 11 10

compatible pairs :

alec,-|(a)o]b,

bl (a,b) (a,c) (a,d)
b|-,-|a.,- |@B)1] e.- (b.e) (b.f)
~ A o]l e ed
c /\E-_I.U Q= | =iy | d
d W d,e *
output p i Il il > output e |e.f x L€ X "
conflict! |, |_ _|, |4 K conflict! ' Ve ©
il d, ey
Fle x|l V] Xle sy
\jl a, ; e, &S %
A a b ¢ d e

{a) Primitive flow table (b) Implication table 9-38




Maximal Compatibles

|
= A group of compatibles that contains all the possible

combinations of compatible states
= Obtained from a merger diagram
= A line in the diagram represents that two states are compatible

= Nh-state compatible - n-sided fully connected polygon

= All its diagonals . -
connected i N e b
fi. al ;
= Not all \
maximal ol L
compatibles | __
are necessary <" & P p/
— =
(n) Maximal compatible: {b) Maximal compatible;

(a.b.) (a,c, d) (b.e.f) (a.b.e fy (b, c. ) (e, d) (g) 9-39




Closed Covering Condition

B
= The set of chosen compatibles must cover all the states
and must be closed
= Closed covering

= The closure condition is satisfied if P ey
= There are no implied states Fd
=« The implied states are included J
within the set (
= Ex: if remove (a,b) in the right \ ]
= (a,c,d) (b,e,f) are left in the set \ /
= All six states are still included

= No implied states according to Rt ey
its implication table 9-23(b) d

(a) Maximal compatible:
(a,b,)) (a.c, d) (b.e.f)
9-40




Closed Covering Example

by

(a) Implication table

(b) Merger diagram

Compatibles {a,b) } (a, d) (b c) {c,d, e)
Implied states (b c) ¥ o (d,e) (a,d,)
tbc)

(c) Closure table

*(a,b) (c,d,e) > (X)
implied (b,c) is not
included in the set

* better choice:
(a,d) (b,c) (c,dse)
all implied states
are included ¢4
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Race-Free State Assignment

Objective: choose a proper binary state assignment to
prevent critical races

Only one variable can change at any given time when
a state transition occurs

States between which transitions occur will be given
adjacent assignments

« Two binary values are said to be adjacent if they differ in only

one variable

To ensure that a transition table has no critical races,
every possible state transition should be checked

= A tedious work when the flow table is large

« Only 3-row and 4-row examples are demonstrated

9-43




3-Row Flow Table Example (1/2)

= Three states require two binary variables
= Outputs are omitted for simplicity
= Adjacent info. are represented by a transition diagram

= a and c are still not adjacent in such an assignment !!
« Impossible to make all states adjacent if only 3 states are used

Xy x2
00 01110 g e
II/'—“\"'.—N r\}--—-\l
a ,\a ':t b c il a}
— = ---» bhasa
b ar\?’?) r'/ﬁﬂwc transition
%\ . '.. P{.’
il B toc
P N ;J,_\\
c F\I_IM[" ?: |r\\f /; IL\-‘.'.'-/j c=11

(a) Flow table (b) Transition diagram Q.44



3-Row Flow Table Example (2/2)

A race-free assignment can be obtained if we add an
extra row to the flow table
= Only provide a race-free transition between the stable states

The transition from a to ¢ must now go through d
« 00 2> 10 > 11 (no race condition)

X1x2 X1X2
oo o 1110 o0 o1 11 10
— gy — —
(a)| & d |(a) a =00 b =01 a=00 | (00)f o1 10 @)
a (/;\ ()| - b-o1| o0 G}T Y o) 1
. N/ 7 k S
d c_} "’j *f,\ c=11| 10 Q}) @\; {_;1_ ij'
Y. JY — —
a . c 2 d-=10 c =11 d=10] oo | -3 1 f -3
5 - 8 -

don't care but cannot be 10 | ¢
(cannot stable) 9-45




4-Row Flow Table Example (1/2)

= Sometimes, just one extra row may not be sufficient to
prevent critical races
= More binary state variables may also required
= With one or two diagonal transitions, there is no way of
using two binary variables that satisfy all adjacency

00 0l 11 10

a b La) d fﬂn} a b

T -

Y

o~ —

f ' 'l
\ \

da } c d (s

>

L

(a) Flow table (b) Transition diagram
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4-Row Flow Table Example (2/2)

Y1V2 00 01 11 0

0001110 UDD:;:IJ@E@%
Y3

’ i ’ “HE 001=b @ d @ a | still has
8 A only 4
: \.E +d ‘h{,’ Oll=¢ @ g b @ stable
states

0o0=¢g | - [ a | - -

110 - S . -

m=f| ¢ | - | - ,:

~—
101 =d 5 @ d)| f
d=101 \ f=111! c=o11
oo wo=e | - | - | 4 | -

(b) Transition diagram 9-47




= Multiple-row method is easier

= May not as efficient as in above
shared-row method

= Each stable state is duplicated

with exactly the same output

= Behaviors are still the same
= While choosing the next states,

choose the adjacent one

¥1
0
can be used <« --
to any 4-row 1
flow table

00

y2y3
01

11

10

ay

by

1

d

<2

dy

a3

by

(a) Binary assignment

000 = ay

111 = ay

001 = by

110 = by

011 =

100 = ¢9

010 = dy

101 = d

Multiple-Row Method

01 11 10
~— P
by (az) & |(a)
P, —~
g'\bQ dy (b]) ap
N\ s
)| 4 |G| =
e
@ as b] I\CD
&= |@
N f‘_“x\
= @f’l [“\dlf o
s
{b) Flow table
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Hazards

I

= Unwanted switching appears at the output of a circuit
=« Due to different propagation delay in different paths

= May cause the circuit to mal-function
»« Cause temporary false-output values in combinational circuits
»« Cause a transition to a wrong state in asynchronous circuits
= Not a concern to synchronous sequential circuits

= Three types of hazards:

1 1 1

(a) Static 1-hazard (b) Static 0-hazard (¢) Dynamic hazard
9-50




Circuits with Hazards

| = Static hazard: a momentary output change when no

output change should occur

« If implemented in sum of products:
= ho static 1-hazard > no static 0-hazard or dynamic hazard

= Two examples for static 1-hazard:

x1=1

| e
1 )—1+0

x3] @10
() —=
DC ||

o 1D

9 0—»1

|

.‘[3=1

©

(a) AND-OR circuit

1

=¥

©0

.I]=1

D_

Q1 >0

:

1 @

D+
[>o—

—

13=1

2}

(b) NAND circuit
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Hazard-Free Circuit

|
= Hazard can be detected = A e

Xy x;

by inspecting the map 0 b )

= The change of input | G T 19D

results in a change of
covered product term

- Hazard exists Ly D
- Ex: 111 > 101 in (a) T

= To eliminate the hazard, D— —j P
enclose the two minterms |7 )

in another product term j
= Results in redundant gates J Gioandanii

9-52




Remove Hazard with Latches

X1

« Implement the asynchronous circuit with SR latches can

also remove static hazards

= A momentary 0 has no effects to the S and R

inputs of a NOR latch

= A momentary 1 has no effects to the S and R

inputs of a NAND latch

-
)

a) Logic diagram

Replaced
by a latch

Y= 111 t x's

Hazar'ds
exist |l

=

0

10

(0 )

"l /7. ™
/ 1)
A & LY &

(b) Transition table

o B

01 11

(c) Map for ¥

9-53




Implementation with SR Latches

B
= Given:
S=AB+CD
R=AC
= For NAND latch, use
complemented inputs
« S = (AB + CD)’
= (AB)’(CDY’
= R =(AC)

= Q=(QS)
= [Q'(AB)(CD)T

- Two-level circuits

A
B

C

(this is the output we want)

(b)

9-54




Essential Hazards

|

= Besides static and dynamic hazards, another
type of hazard in asynchronous circuits is called
essential hazard

= Caused by unequal delays along two or more
paths that originate from the same input

= Cannot be corrected by adding redundant gates

= Can only be corrected by adjusting the amount
of delay in the affected path
»« Each feedback path should be examined carefully !!
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Recommended Design Procedure

|
1. State the design specifications

2. Derive a primitive flow table

3. Reduce the flow table by merging the rows
4. Make a race-free binary state assignment
5. Obtain the transition table and output map
6. Obtain the logic diagram using SR latches

9-57




\ Primitive Flow Table

rc
= Design a negative-edge-triggered 0001 11 10
T ﬂip'ﬂop a |- | F, c_fu Ol &,
= Two inputs: T(toggle) and C(clock) 1 =
? g - iy 2
= T=1: toggle, T=0: no change 3 ~
= One output: Q e | == | w2 l@En1] a.-
Input Output il e a.- |l o
State T C Q Comments
a 1 1 0 Initial output is 0 : l@.0] 7 .
b i 0 1 After state a i Lt '
C 1 1 1 Initial output is 1 ile-lDola.-]-.-
d 1 0 0 After state c o
e 0 0 0 After states d or f e leayil ool =2l s
f 0 1 0 After states e or a
g 0 0 1 After states bor h h ol e =1 - -
h 0 1 1 After states g or ¢ S ' " | o-58




| Merging the Flow Table

Compatible pairs: o T
(@.f) (b.g) (b.h) (ch) ~
o) (dHEhH@h |

a,cx ' ?r
Maximal compatible set: /
%|b,dx /
(a.f) (b.g.h) (c.h) (d.e.f) \ A
b,dX Xl|la,cX a b c d - : =
e, 0%
b X b»ﬁ‘x LR v ol £ 1 10
IR 200
1| e~ |r1
fhx|  /lbax|p8% «|pE X il i
hl gt |(BLL et | 4 c|b cvt ke | 4
f.hx d,ex|e,gx o
a,cx v Ve, rx|f hx X v Pt _ _ - . -
Gefllero (N0 | e,- |(d)0  d |(d)0 |(d).0 | a,- |0
a b C d ¢ f g =1 -
(a) (b)
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State Assignment & Transition Table

= No diagonal lines in the transition diagram

- No need to add extra states

a =00 b =01 o
- a = ()
b =01l

c=11

d;:l;(:- c=11 d=10

Fig. 9-43 Transition Diagram

TC
0 o0 1 10
10 |/ 'm':‘ _f'tmll"j' 01
(o) (m)] 1 [(on)
o |[(n)|(1)]| 10
(10)| (10)| o0 |(10)

(a) Transition table

Y1y2
00

01

10

rc
00 01 11 10

1 1 1 1
1 1 | X
0 0 0 0

(b) Output map Q = y,
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i Logic Diagram

Yy
00

o1

10

yiva

o1

W 01 11 10
1,00 o0
o | o (1] o
0 X le X
X\| x| o | X

(@S =pnTC+y, T

TC
0 01 11 10
0 0 ] 1
x| x| x|x
X X X 0
ol oflo| o
()5 -y 7C

Tc
yiy2 0o m 11 10

00| 0 X |X)| X

o1 |[’x | x| o| x

mili)ofo] o

10| 0 0|1 0

(YR =y TC +y3TC

Tc
y1¥a 0 o 1 10

Wl X | X| X |0

01| 0 ] 0 0

11| 0 ] 0 1

I ¢ X X X

¥y
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