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Course Overview

Signals and Systems.
Classification of Discrete Digital Systems.
Time and Frequency Domains Analysis.

Signal Transformation Methods: Fourier, Wavelet
and Z-transform.

Digital Filter Types: FIR and IIR Filters.
Digital Filter Design.

Analog Filter Design.

DSP Applications.
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Books

J.G. Proakis and D.G. Manolakis, Digital Signal Processing, 4rd edition,
Prentice-Hall , 2006.

R.G Lyons, Understanding Digital Signal processing, 3rd edition, Prentice-
Hall, (Amazon’s top-selling for five straight year) ,2011.

Monsons Hays, Schaums Outline of Digital Signal processing, 2nd edition
,McGraw-Hill Companies, 2012.

Richard, The Essential Guide to Digital Signal Processing, Ist edition
Prentice-Hall ,ePUB, 2014.

J.G. Proakis , Digital Signal Processing Using MATLAB, 3rd edition, Cengage
Learning , 2012.
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What is Digital Signal Processing?

Signal: It can be broadly defined as any physical quantity that varies as
a time and/or space and has the ability to convey information,
examples of these signals are:

* Electrical signals: currents and voltages in AC circuits, radio
communications signals, video signals etc.

* Mechanical signals: sound or pressure waves, vibrations in a
structure, earthquakes, etc.

* Biomedical signals: electro-encephalogram, lung and heart
monitoring, X-ray and other types of images.

* Finance: time variations of a stock value or a market index.

Digital Signal: operating by the use of discrete signals to represent data
in the form of numbers.
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What is Digital Signal Processing?

Processing: a series operations performed according to
programmed instructions.

changing or analysing information
|:> which is measured as discrete
sequences of numbers

"Learning digital signal processing is not something
you accomplish; it’s a journey you take”.

R.G Lyons, Understanding Digital Signal processing
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What is Digital Signal Processing?

Converting a continuously changing waveform
(analog) into a series of discrete levels (digital)
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What is Digital Signal Processing?
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What is Digital Signal Processing?

Discrete-time signals are represented by sequence of numbers
— The nth number in the sequence is represented with x[n]

Often times sequences are obtained by sampling of
continuous-time signals
- In this case x[n]is value of the analog signal at x_(nT)
- Where T is the sampling period
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discrete signal is discrete in time but continuous in amplitude.

digital signal is discrete in both time and amplitude.
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The Concepts of Signals and Systems

The most convenient mathematical representation of a signal is via
the concept of a function, say x{(#). In this notation:

X represents the dependent variable (e.g. voltage, pressure, etc.)
t represents the independent variable (e.g. time, space, etc.).

Depending on the nature of the independent and dependent
variables, different types of signals can be identified such as:

v" Analog signals

v' Discrete signals

v’ Digital signals

v" Multi-channel signals

v' Multi-dimensional signals
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The Concepts of Signals and Systems

« System: A physical entity that operates on a set of primary
signals (the inputs) to produce a corresponding set of resultant
signals (the output).

* The operations, or processing, may take several forms:

modification, combination, decomposition, filtering, extraction
of parameters, etc.

« System characterization: a system can be represented
mathematically as a transformation between two signal sets ,
asin x{n] = y[n]:

L0 N B ) B
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, ) The Concepts of Signals and Systems

‘
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B Depending on the nature of the signals on which the
system operates, different basic types of systems
may be identified:

» Analog or continuous-time system: the input and output
signals are analog in nature.

» Discrete-time system: the input and output signals are
discrete.

» Digital system: the input and outputs are digital.

» Mixed system: a system in which different types of signals
(i.e.analog,discrete and/or digital) coexist.
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The Concepts of Signals and Systems

Discussion:

B Early education in engineering focuses on the use of calculus to analyze
various systems and processes at the analog level:

» motivated by the prevalence of the analog signal model
» €.g.. circuit analysis using differential equations

E Yet, due to extraordinary advances made in micro-electronics, the most
common/powerful processing devices today are digital in nature.

B Thus, there is a strong, practical motivation to carry out the processing of
analog real-world signals using such digital devices.

B This has lead to the development of an engineering discipline know as
digital signal processing DSP.

Digital Signal Processing:

B Inits most general form, DSP refers to the processing of analog signals by
means of discrete-time operations implemented on digital hardware.
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Basic components of a DSP System

In its most general form, a DSP system will consist of three main
components, as illustrated below:

X (t x.[N Digital n y.(t)
O I D dnl |G LY ,
Processing

 The analog-to-digital (A/D) converter transforms the analog signal
x(?) at the system input into a digital signal x_[n].
* The digital system performs the desired operations on the digital

signal x,[n] and produces a corresponding output y,[n] also in
digital form.

* The digital-to-analog (D/A) converter transforms the digital output
y,[n] into an analog signal y.(¢) suitable for interfacing with the
outside world.
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Basic components of a DSP System

Digital

Input
Signal A/D Converter

Converts an analog ¢
A/D . .
Converter 2 signal into a sequence
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signal
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Basic components of a DSP System
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DSP Implementation —Analog/Digital
Conversion

To implement DSP we must be able to:

Input Digital Digital
Signal Signal

DSP

OQutput

(1) perform numerical operations including, for example, additions, multiplications,
data transfers and logical operations either using computer or special-purpose

hardware.
Digital Digital Analog
Signal Signal ;
> DSP > Reconstruction Signal

(2) convert the digital information, after being processed back to an analog signal —
involves digital-to- analog conversion and reconstruction .
e.g. text-to-speech signal (characters are used to generate artificial sound)
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DSP Implementation —Analog/Digital
Conversion

To implement DSP we must be able to:

Analog Digital Digital
Signal i Signal Signal
— ™ Sampling - DSP -

3) convert analog signals into the digital information - sampling & involves analog-to-
digital conversion.

e.g. Touch-Tone system of telephone dialling (when button is pushed two sinusoid signals
are generated (tones) and transmitted, a digital system determines the frequencies and
uniquely identifies the button — digital (1 to 12) output

Analog Digital Digital
Signal Signal Signal
o

Sampling g DSP * Reconstruction

Analog
Signal
——"

perform both A/D and D/A conversions

e.g. digital recording and playback of music (signal is sensed by microphones,

amplified, converted to digital, processed, and converted back to analog to be played.
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DSP Chips : Special Purpose Hardware

Introduction of the microprocessor in the late 1970's and
early 1980's meant DSP techniques could be used in a
much wider range of applications.

DSP chip — a programmable

device, with its own native
instruction code

designed specifically to meet
numerically-intensive
requirements of DSP

capable of carrying out
| millions of floating point

Bluetooth Household Home theatre o

headset appliances system Operatl()ns per Second
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Limitations of DSP-Aliasing

Most signals are analog in nature, and have to be sampled.

= |oss of information
we only take samples of the signals at intervals and don’t know
what happens in between

m=) aliasing
cannot distinguish between
higher and lower frequencies

(recall from 1B Signal
and Data Analysis)

Sampling theorem: to avoid
aliasing, sampling rate must be
at least twice the maximum
frequency component
("bandwidth’) of the signal

Giendemsio, A. Aliasing Applel, Connexions, hitp:-foenx. orgfoontent/im 1 T448/0_ 14
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Limitations of DSP - Antialiasing Filter

- Sampling theorem says there is enough information
to reconstruct the signal, which does not mean

sampled signal looks like original one
(:> correct reconstruction is not
I‘ f| |f| | “ f| |1 |] fl just connecting samples with
“lJ | ” ll | Ul Il IJ IHIJ‘ straight lines
'} i
needs antialias filter (to filter out all
I\] i | ||\ | ||H f|| | {l |\| f high frequenlcy clomponents before
N \l l} HJ I \| IJ [ HH | H' I{ U f sampling) and the same for

reconstruction — it does rejve

information though
Dept. of Computer and Software Engineering

Each sample
is taken at a
slightly earlier
part of a cycle

Lecturer: WARQAA SHAHER 21



Limitations of DSP — Frequency Resolution

Most signals are analog in nature, and have to be sampled
m loss of information

« we only take samples for a limited period of time

m) limited frequency
resolution

does not pick up “relatively”
slow changes
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Limitations of DSP — Quantization Error

Most signals are analog in nature, and have to be sampled
m loss of information

* limited (by the number of bits available) precision in data
storage and arithmetic

= quantisation error

smoothly varying signal
represented by “stepped”
waveform
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Advantages of Digital over Analog Signal Processing

Why still do it?

e Digital system can be simply reprogrammed for other applications /
ported to different hardware / duplicated (Reconfiguring analog
system means hardware redesign, testing, verification)

e DSP provides better control of accuracy requirements (Analog system

depends on strict components tolerance, response may drift with
temperature)

e Digital signals can be easily stored without deterioration (Analog

signals are not easily transportable and often can’t be processed off-
line)

e More sophisticated signal processing algorithms can be implemented
(Difficult to perform precise mathematical operations in analog form)
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Advantages of Digital over Analog Signal Processing

Advantages:

* Robustness:

* Signal levels can be regenerated.

*  Precision not affected by external factors

* Storage capability:

*  DSP system can be interfaced to low-cost devices for lasting storage

* allows for off-line computations

*  Flexibility:

. IEE)asy control of system accuracy via changes in sampling rate and number of representation
its.

* Software programmable - reconfiguring the DSP operations simply by changing the program.

*  Structure:

* Easy interconnection of DSP blocks (no loading problem)

*  Possibility of sharing a processor between several tasks

Disadvantages:

*  Cost/complexity added by A/D and D/A conversion.
* Inputsignal bandwidth is technology limited.

* Quantization effects.
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Radar and Sonar:

g Examples

A 1) target detection — position and
G velocity estimation

( 2) tracking
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Applications of DSP: Biomedical

Biomedical: analysis of biomedical signals,
diagnosis, patient monitoring,
preventive health care, artificial
organs

Examples:

1) electrocardiogram (ECG) signal — provides
doctor with information about the condition of

the patient’s heart

|

2) electroencephalogram (EEG) signal — provides l;

Information about the activity of the brain \.\

Dept. of Computer and Software Engineering
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Applications of DSP: Speech

Speech applications:

)

s ® B LF
L
l.‘l""

Examples

1) noise reduction — reducing background noise
in the sequence produced by a sensing device (microphone)

2) speech recognition — differentiating
between various speech sounds

3) synthesis of artificial speech — text to speech
systems for blind

Lecturer: WARQAA SHAHER 28 Dept. of Computer and Software Engineering



Applications of DSP: Communications

Communications:

B8

Examples @ @

1) telephony — transmission of information in digital form via
@ telephone lines, modem technology, mobile phones

E (

2) encoding and decoding of the information -
sent over a physical channel (to optimise @. P
transmission or to detect or correct errors in -
transmission)

»
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Image Processing:

Examples

1) content based image retrieval — browsing,
searching and retrieving images from database INFORNKTION RETRIEVAL

AP -
2) image enhancement

8o fq'e

2) compression - reducing the redundancy in
the image data to optimise transmission /
storage
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Examples:

1) Recording

A"
B o
|

3) Manipulation (mixing, special effects)

Lecturer: WARQAA SHAHER 31 Dept. of Computer and Software Engineering



generation storage and
transmission of sound, still
Images, motion pictures

Examples:
1) digital TV

2) video conferencing @@(ﬂ
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SPACE
Space photograph enhancement
Data compression

Imtelligent sensory analysis

MEDICAL

Diagnostic imaging (MRI, CT)
Electrocardiogram Analysis
Medical immage storage and retrieval

COMMERCTAL

Image and sound compression for
multimedia presentation.

Movie special effects

Video conference calling

TELEPHONE

Video and data compression
echo reduction

signal multiplexing

filtering

Lecturer: WARQAA SHAHER
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Applications of DSP

MILITARY

Radar

Sonar

Ordnance Guidance
Secure communication

INDUSTRIAL

Ol and mineral prospecting
Process monitoring and conirol
Non-desiructive testing

CAD and design tools

SCIENTIFIC

Earth quick recording and analysis
Data acquisition

Spectral Analysis

Simulation and Modeling

Dept. of Computer and Software Engineering
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Lecture Outline

* Classification of Signals

* Basic Types of Digital Signals:
1) Unit Step
2) Impulse
3) Ramp
4) Exponential
5) Cosine
* Classification of DSP Systems:
1) Causality
2) linearity
3) Time Invariant
4) Stability
* Characterization of Digital Filters:

(1) Recursive (2) Non-Recursive

Lecturer: WARQAA SHAHER 35 Dept. of Computer and Software Engineering



Classification of Signals

 Multichannel and Multidimensional Signals

51(1y = Asin3mt

s2(1) = Ae?>™" = Acos 371 + jAsin 31

51(1)
Sa(r) = | s2(1)
$(1)

I (x,y.1)
Ix,y.1)= [fg{.t. ,\u!}:l

Ib(-'rt }Lv I)
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T 0 1 2 3 4

x(N =08, r>0and x(r) =0, 1 <0

() = 08", ifn=>0
YW=10.  otherwise
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Classification of Signals

* Deterministic and Random Signals

B Deterministic Vs Random Deterministic signal
» A deterministic signal is a signal in which T T T mEmmE
each value of the signal is fixed and can

be determined by a mathematical

expression. The past, present and future

of a deterministic signal are known with

certainty. Because of this the future values

of the signal can be calculated from past

values with complete confidence.
« Example:x()=<"i5 a deterministic

signal.

» A random or stochastic signal has a lot of Random signal
uncertainty about its behawvior. The future S e
values of a random signal can’t be
accurately predicted. The random signal
can be modeled using statistical
information about the signal.

» Examples: some common examples
of random signals are speech and
Mmusic.

MATLAB
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* Deterministic and Random Signals
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Classification of Signals

* Peroidic and Aperoidic Signals

B Periodic VS Aperiodic

» Periodic signals repeat with some period T, while aperiodic, or
nonperiodic, signals do not. We can define a periodic function through
the following mathematical expression, where t can be any number and

T is a positive constant
X(t) = x(t+T)
» The fundamental period of our function, x(t), is the smallest value of T
that allows above Equation to be true.

Periodic signals Aperiodic signals
Mhom

SAVAVAVA SN N VN
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Classification of Signals

* Peroidic and Aperoidic Signals

Defining Periodicity of a discrete-time signal:

B For any continuous-time sinusoidal function x(t) = 4 cos(Q,t +6)
then it is always periodic with period I'=27/Q,,.

Example 1: Show that x(t)=x(t+T)= 5/t o

Solution 1 x(t+'£)€m.;(f_rj} — g/t G IT _ ot _E-"%En_aj _ o/t 27

Recall that e/*" =cos(27) + jsin(27) =140 =1

Hence, =¢&** =x(t) Proved.

B For a discrete-time sinusoid, it may or may not be
periodic!

B So how can we say if a discrete function is periodic or
not??7?7?

Lecturer: WARQAA SHAHER 43 Dept. of Computer and Software Engineering



Classification of Signals

* Peroidic and Aperoidic Signals

B To decide if a discrete function is periodic or not, lets
assume, x(n)=cos(nw, +6) is a periodic signal such that
x(m)=xin+ N) then:
cos(new, + &) =cos([n+ N]w, + &) =cos(hw, + No, + 8) = cos(na, + 8 + No,)

B According to our assumptionz( is a periodic signal,
therefore No,must be equal to the integer multiple of 21,
thus:

" No, =127 where | is the integer > 0.
Therefore, 4, Ly
N

» So forx(n)=cosiw, +6) to be periodic,@;must be a rational
multiple of 21T

» The periodicity of x(#n)is N, where o, =ir:;r, and | and N are the
smallest pnsslble integers. N

Lecturer: WARQAA SHAHER 44 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Continuous-time Sinusoids

To find the pericd T = 0 of a general continucus-time sinusoid
x(t) = Acos(wt + ¢):

x(t)
A cos(wt + @)
Acos(wt + ¢ + 2wk)

x(t+ T)
Acos(w(t + T)+ @)
Acos(wt + ¢+ wT)

2mk = wlT
2wk
T = —
where k = Z. Note: when k is the same sign as w, T = 0.

Therefore, there exists a T = 0 such that x(t) = x(t + T) and
therefore x(t) is | periodic |

Lecturer: WARQAA SHAHER 45 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Periodicity

Recall if a signal x(t) is periodic, then there exists a T = 0 such that

x(t)=x(t+T)

f no T = 0 can be found, then x(t) is non-periodic.

Lecturer: WARQAA SHAHER 46 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Discrete-time Sinusoids

To find the integer peried NV = 0 (i.e., (N = Z7 ) of a general
discrete-time sinusoid x[n] = Acos(C2n + ¢&):

x[n] = x[n+ N]

Acos(f2n + ¢) = Acos(f2(n+ N) + @)
Acos(fin + & + 27k) Acos({2in + & + QN)
2wk = QN

2wk
N = 02

where k = #.

MNote: there may not exist a k € Z such that % s an integer.

Lecturer: WARQAA SHAHER 47 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Discrete-time Sinusoids

Example i: €2 = %r
2mk 2wk 22
N — — — I:f
37
Q T 37
22 . _ ) .
N = ﬁk = |22 | for kK = 37; x[n] is periodic.
Example ii: ©2 = 2
2wk 2wk
2 2
N = EZ7 does not exist for any k € &; x[n] is non-periodic.
Example iii: @ = 2w
2mk 2wk
N = — — V' 2k
{2 2

N = EY does not exist for any k& = &; x[n] is not periodic.
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Classification of Signals

Discrete Time Sinusoids

2wk
N = —
2k k .
0 = N Eﬂ'ﬁ =T |5
R—
RATIONAL

Therefore, a discrete-time sinusoid is periodic if its radian frequency
(2 i1s a rational multiple of .

Otherwise, the discrete-time sinusoid 1s non-periodic.
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Classification of Signals

Discrete Time Sinusoids
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The fundamental period 1s 12 which corresponds to kK = 1 envelope
cycles.
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Classification of Signals

Discrete Time Sinusoids

o

J |E1—l

ENVELOPE CYCLES %.01./*
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Classification of Signals

Discrete Time Sinusoids

Example 2: Q = 87/31 = - |3

s
|
i
e
Q'
-4
x-
|
$u

The fundamental period is 31 which corresponds to kK = 4 envelope
cycles.
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Classification of Signals

Discrete Time Sinusoids

i1
)| ¢ [
- .I{C — ] &
ENMVELOPE CYCLES
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Classification of Signals

Discrete Time Sinusoids

Example 3: Q =1/6 =7 - 6%

x[n] = cos (g)

2wk 2wk
N — = — -'1 — 127k
?. 5
8]
N € Z" does not exist for any k € Z; x[n] is non-periodic.
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Classification of Signals

Discrete Time Sinusoids

[ | (“)
L, = Cos | —
, Tl =cos| &

] .
N does not exist
'[ T NOT PERIODIC I -
_ il e 1 ~
| l H l l l l | ﬂ
.
s L
» 111 i
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Classification of Signals

Discrete Time Sinusoids

Continuous- I'ime Sinusoids: Frequency and Rate
of Oscillation

x(t) = Acos(wt + @)

Rate of oscillation increases as w increases (or T decreases).
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Classification of Signals

Discrete Time Sinusoids

Lecturer: WARQAA SHAHER 57
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Classification of Signals

Discrete Time Sinusoids

27T 1
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Classification of Signals

Discrete Time Sinusoids

Continuous- Time Sinusoids: Frequency and Rate
of Oscillation

Also, note that x;,(t) # xx(t) for all t for
x1(t) = Acos(wyt + @) and xa(t) = Acos(wst + &)

when wy #£ ws.
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Classification of Signals

Discrete Time Sinusoids

Discrete- Time Sinusoids: Frequency and Rate of
Oscillation

x|n] = Acos(Qn + ¢)

Rate of oscillation increases as {2 increases UP TO A POINT then
decreases again and then increases again and then decreases again

Lecturer: WARQAA SHAHER 60 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids
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RNERRRR ST L
-HHHH ~~~~~ Jﬁl! T Tl ﬁlll

l[r I_mjh m]h ml “Tﬂ“ il ﬂl IJJJHIH H HHH[HIH




Classification of Signals

Discrete Time Sinusoids

Discrete- I ime Sinusoids: Frequency and Rate of
Oscillation

x[n] = Acos(Q2n + &)

Discrete-time sinusoids repeat as {1 increases!
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Classification of Signals

Discrete Time Sinusoids

Discrete- Time Sinusoids: Frequency and Rate of
Oscillation

Let
x1[n] = Acos(Q21n+ @) and xz:[n] = Acos($2an + &)

and £2-, = 2, + 2wk where kK & Z:

x->[n] = Acos(fl.n+ &)

Acos((£2y + 27k)n + @)
Acos(f2:n + 2mkn + ¢)
Acos(2:n + @) = x[n]
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Classification of Signals

Discrete Time Sinusoids

VY
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Classification of Signals

Discrete Time Sinusoids

L [ 0 4
-2 2 G
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Classification of Signals

Discrete Time Sinusoids

Discete- I ime Sinusoids: Frequency and Rate of
Oscillation

x[n] = Acos(Q2n + &)

can be considered a sampled version of
x(t) = Acos(Q2t + &)

at integer time nstants.

As {1 increases, the samples miss the faster oscillatory behavior.
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Classification of Signals

* Peroidic and Aperoidic Signals

Example 2: Determine which of the sinusoids are periodic and
compute their fundamental period.

(a)cos0.01mwn
Solution 2: cos(0.017n ) = tn{l:ﬂ:x n'ﬂlﬂ}= tﬂ{lﬂiﬂ}
2 200

which means that the signal is periodic with f = 1/200 and
fundamental period N = 200.

(b) cos(n30n/105)
Solution: [ 30 J [ 30 J [ 1 J
cos|] T—mn |=cos| 27 n |=cos| 2mT—n
105 105x2 7

I.e. the signal is periodic with f = 1/7 and fundamental period = 7.
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Classification of Signals

* Peroidic and Aperoidic Signals

Tutorials 1:

(a) cos(3n)

(b) 3cos(5n + n/6)

(c) x[n] = cos(nn/2) — sin(nn/8) + 3cos(nn/4 + w/3)
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Classification of Signals

* Peroidic and Aperoidic Signals
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Classification of Signals

e Causal Vs. Anticausal Vs. Noncausal

B Causal Vs Anticausal Vs Noncausal
» Causal signals are signal A causal signal
that are zero for all negative T‘ﬂuﬁuﬂt
time. e

» Anticausal are signals that An ﬂnﬁcausf signal
.-y . it}
are zero for all positive time.

7 |‘|~}‘

» Noncausal are signals that zera hare
have nonzero values Iin both A noncausal signal
positive & negative time. ﬂ

S -
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Classification of Signals

* Right Handed Vs. Left Handed

B Right Handed Vs Left Handed

» Right handed signal is defined as any signal where
X(n) = 0 for n<N<e,

» Left handed signal is defined as any signal where
X(n) = 0 for n>N>e.

Right-handed signal Left-handed signal
A A
l /-—\'\,_,r"'- . 4e "'—""’.\.._...---\ 1
“ > € >
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Classification of Signals

* Finite Vs. Infinite Length

B Finite Vs Infinite Length

» Signals can be characterized as to whether they have finite or
infinite length set of values.

» Most finite length signals are used when dealing with discrete
time signals or a given sequence of length.

» Mathematically speaking, x(t) is a finite length signal if it is
nonzero over a finite interval t,<x(t)<t, where t,=-= & t,<e

» Infinite length signal, x(t), is defined as non zero over all real
numbers.

™ o000l TTT il 0000
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Classification of Signals

* Even Vs. Odd
B Even Vs Odd

» An even or symmetric signal (discrete or continuous) is any signal such
that x (-t) = x(t) or x [-n] = x[n]
i Ev_en signals can be easily spotted as they are symmetric around the vertical
axis.

» An Odd signal (discrete or continuous), on the other hand, is a signal
such that x (-t)= -x(t) or x [-n]= -x[n]

» An odd signal is anti-symmetric! Even signal
» Any signal can be written as: A toft)
X(n)=x . (n) + X, (n) /_/‘\ _
xg(n) _ % [x(n) +x(— n)] Odd signal
Where, 1 1 o
() == [x(n)—x(=n)] 7 >
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Basic Digital Sequences (Signals)

Unit impulse (unit sample)

5(n) = { é " 0

T
u(n) = Z 0(m) summing,
m=—oo

o(n) = wu(n)—wu(n—1) differencing.

Sir)

1

~2-10 1 2 3 4 .. "
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Basic Digital Sequences (Signals)

Exponential Signhal
x(n)=a" for all n

If the parameter a is real, then x(n) is a real signal.

’
T

a>i xim)

[ ——————
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Basic Digital Sequences (Signals)

Exponential Signhal
x(n)=a" for all n

When the parameter a is complex valued, it can be expressed as
a =re’*

where r and ¢ are now the parameters, Hence we can express x(n) as

x(n) = rheltn

r'(cosén + jsintin)
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Basic Digital Sequences (Signals)

Exponential Signal

0.9 I
06 }
03 |
0 [ #ITWTTTQ TN e
S 75 weeett 50 75 "
03t

{a) Graph of xgin) = {0L9)" cox =
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Basic Digital Sequences (Signals)

Exponential Signhal

»
06

03 ¢
-

o LJ'I P.TTHZUTT!W.@...;"_ aes oo .:... ........ -

l

(b) Graph of x,(n) = ((0.9)" sin %‘
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€ Basic Digital Sequences (Signals)

Sinusoids Signal

Sinusoids
r(n) = Asin(wn + 0)

Useful properties:

exp[j(wn +60)] = cos(wn+0)+ jsin(wn + ),
0 explilwn + 8)] + expl—j(wn + 6)]
cos(wn +0) = 5 :
expli(wn + )] - expl—j(wn +0)]

sin(wn + 6) = 5
J
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Basic Digital Sequences (Signals)

Sinusoids Signal

A sine wave as the projection of a complex phasor onto the
Imaginary axis:

Im
'A

Re 1
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Classification of DSP Systems

Linear Vs. Non-linear Systems

A linear system is any system that obeys the properties of scaling (homogeneity) and
superposition (additivity), while a nonlinear system is any system that does not obey at
least one of these.

To show that a system H obeys the scaling property is to show that

H (kf(t)) = kH (f (t))

To demonstrate that a system H obeys the superposition property of linearity 1s to show
that
H (f1 (1) + f2 () = H (i (t) + H (f2(2))

[t 1s possible to check a system for linearity in a single (though larger) step. To do this,
simply combine the first two steps to get

H (kyfi(t) + Eafa(t)) = kaeH (f1(t)) + k2H (f2 (1))
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Classification of DSP Systems

Linear vs. Non-linear Systems

= f(t) — [H— @ —y(t)

[

fit) — Q —> [H|— ()
K
J 1 l
& — [il —>
r,
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Classification of DSP Systems

Linear vs. Non-linear Systems
e Linear System: A system is linear if and only if
T{x,[N] + x,[N]} = Tix,[N]}+ T{x,[n]} (additivity)

and
T{ax[n]} = aT{[n]} (scaling)

e Examples
— Ideal Delay System

y[n] = x[n —n,]

T{x,[n] + x,[n]} = X;[h—n, 1+ x;[n—n,]
TGNy + Tix N = x,n—n_ 1+ x,[n—n_]
Tiax[nl} = ax,[h —n,]
aTix[nl} - ax.[n—n_]
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Classification of DSP Systems

Time Invariant vs. Time Variant

A time invariant svstem is one that does not depend on when it occurs: the shape of the
output does not change with a delay of the input. That is to say that for a system H where
H(f(t))=y(t), H is time invariant if for all T

H(f(t—-T))=y(t-T)

fif) —)Aﬁ Hi— yItT) = ) — H %”A_) y{i=T)

f(tT) V(1)

When this property does not hold for a system, then it is said to be time variant . or
tlme-varying.
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Classification of DSP Systems

Time Invariant vs. Time Variant

¢ Time-Invariant (shift-invariant) Systems
- A time shift at the input causes corresponding time-shift at output

yln] = T{x[n]} = yIn—n,]1 = TXIn —n, 1}

e Example
- Square

Delay the input the output is yln]: (_M[n—n,:,]]2

yln]= (x[n]) Delay the output gives ‘f’[ﬂ - ”a] = (x[n- ”c]f

¢ Counter Example
- Compressor System

Delay the input the output is n|=x[Mn-n
Delay the output gives yln-n,]=xMmn-n,)
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Classification of DSP Systems

Casual vs. Noncasual

A causal system 1= one that 15 nonanticipative ; that is, the output may depend on current
and past imputs, but not future inputs. All "realtime” svstems must be causal, since they
can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much phyvsical sense;
however, we have only been dealing with time as our dependent variable so far, which is
not always the case. Imagine rather that we wanted to do image processing. Then the
dependent variable might represent pixels to the left and right (the "future”) of the current
position on the image, and we would have a noncausal system.

Causality

— A system is causal it's output is a function of only the current and
previous samples

Examples
— Backward Difference
yvin] = x[Nn] — x[n — 1]

Counter Example
— Forward Difference

vin] = x[Nn + 1] + x[n]
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Classification of DSP Systems

Stable vs. Nonstable

A stable system 15 one where the output does not diverge as long as the input does not
diverge. A bounded input produces a bounded output. It is from this property that this
type of system 1s referred to as bounded input-bounded output (BIBO) stable.
Representing this in a mathematical way, a stable system must have the following prop-
erty, where x (¢) 1 the input and y (f) 1s the output. The output must satisfy the condition

ly(t)| < My <
when we have an input to the system that can be described as
T(t) | <M, <

M, and M, both represent a set of fimite positive numbers and these relationships hold for

all of t.

I these conditions are not met, 1.e. a system's output grows without linut (diverges)
from a bounded mnput, then the system is unstable .
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Classification of DSP Systems

Stable vs. Nonstable

Stability (in the sense of bounded-input bounded-output BIBO)

— A system is stable if and only if every bounded input produces a
bounded output

X[N]| =B, < =|y[n]] =B, <«

Example
— Square

y[n] = (x[n])’
if inputis bounded by x[n]| =B, < =c
output is bounded by |y[n]| = B < =c

Counter Example

— Log
y[n] = log,, (x[n])
even if input is bounded by [x[n]| = B, < =
output not bounded for x[n] = 0 = y[0] = log,,(x[n])= —==
Lecturer: WARQAA SHAHER 90
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Classification of DSP Systems

Memoryless System

e Memoryless System

— A system is memoryless if the output y[n] at every value of n
depends only on the input x[n] at the same value of n

e Example Memoryless Systems
- Square

y[n] = (x[n])*
- Sign
y[n] = signi{x[n]}

e Counter Example
— Ideal Delay System

yln] = x[n —n,]
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Characterization of Digital
Filters

Recursive and Nonrecursive Digital Filters

A recursive system is one in which the output y(n) is dependent
on one or more of its past outputs (y(n-1), y(n-2)G) while a non
recursive system is one in which the output is independent of any
past outputs .e.g. feedforward system having no feedback is a
non recursive system.

Y()=x(nyrx(o-1) Y(n)=x(n)+y(n-1)

x(n)

L 4
N
‘—é
N «—

L )

Non Recursive System Recursive System
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Discrete Time Systems (DTS)

B A discrete time system is a device or algorithm that operates
on a discrete time signal x[n], called the input or excitation,
according to some well defined rule, to produce another

discrete time signal y[n] called the output or response of the
system.

B \We express the general relationship between x[n] and y[n] as

y[n] = H{x[n]}
where the symbol H denotes the transformation (also called

an operator), or processing performed by the system on x|[n]
to produce y[n].

Discrete-time System

A o |0
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Classification of Discrete Time Systems
(DTS)

Static Versus Dynamic:

B Static System = memory less = the output doesn’t depend
on the past future values of the input.

B Dynamic system = having either finite or infinite memory.
Example 1:

J«’[??] =X’ [?1"] Static or memory-less System

N
vn]= Z x[n—k]  Dynamic-finite
=0

yln]= ;I[ﬂ k] Dynamic-infinite

-
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Classification of Discrete Time
Systems (DTS)

Time Invariant versus Time Variant Systems:

BA system is time invariant if
» When the input is shifted in time, then its output is shifted by the
same amount
» This must hold for all possible shifts.

» Stated in another way, a system is called time invariant if its
input-output characteristics do not change with time.
Otherwise the system is said to be time variant.

RIf a shift in input x[n] by f, causes a shift in output yn] by {, for all real-
valued f;, then system is time-invariant:

x[n] T y [n]

System yn-t,

®[n-ty]
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Classification of Discrete Time
Systems (DTS)

Example 2: Determine if the system shown in the
figure Is time invariant or time variant.

Solution 2: y[n] = x[n] — X[n-1] x[n
Now if the input is delayed by k

y[n]

units in time and applied to the 71
system, the output is
y[n,k] = n[n-K] — x[n-k-1] (1)

On the other hand, if we delay y[n] by K units in time,
we obtain

y[n-K] = X[n-K] — x[n-k-1] (2)
(1) and (2) show that the system is time invariant.
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Examples

Example 3: Determine if the following systems are time invariant or time
variant.

(a) y[n] = nxIn] (b) y[n] = x[n]cosw,n

Solution 3:
(a) The response to this system to x[n-k] is
y[n,k] = nx[n-k] (3)

Now if we delay y[n] by k units in time, we obtain
y[n-k] = (n-k)x[n-k]
= nX[n-k] — kx[n-k] (4)
which is different from (3). This means the system is time-variant.
(b) The response of this system to x[n-k] is
y[n,K] = x[n-kK]cosw,n (5)
If we delay the output y[n] by Kk units in time, then
y[n-K] = x[n-k]Jcosw,[n-k]
which is different from that given in (5), hence the system is time variant.
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ryClassification of Discrete Time
== Systems (DTS)

Tutorials:

Q4:Determine whether the following
systems are time invariant or time
variant.

(a) y[n] = y[n-1] + 2X[n] — 3X[n-1] + 2X[n-2]
(b) y[n] = (y[n-2])/n = 2x]n]
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Linearity

B A system s linear If it is both

» Homogeneous: If we scale the input, then the output
s scaled by the same amount:

- fla 1:(3‘)) =a f (x(2))
» Additive: If we add two input signals, then the output
will be the sum of their respective outputs

£ o)+ x,(0) = f G (0))+ f (o, (0)

F A system that Is both linear and time invariant is
called Linear Time-Invariant (LTl) system.

Lecturer: WARQAA SHAHER 101 Dept. of Computer and Software Engineering



Classification of Discrete Time
Systems (DTS)

Linear versus Non-linear Systems:

A system H is linear if and only if

H[a,x,[n] + a,x,[n]] = a,H[x,[n]] + a,H[x,[n]]
for any arbitrary input sequences x,[n] and x,[n], and any arbitrary
constants a, and a,.

H=H,*H.=H.*H, for
x[n] y [n] near systems only!
. H1 . |_|2 . Linear systems only!
Cascaded
H,
x[n] / . VIn] H=H,+H,
g ’ for Linear systems
Parallel H only!
2
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Examples

Example 4: Determine if the following systems are linear or
nonlinear.
(a) y[n] = n x[n] (b) y[n] = A x[n] +B
Solution 4.
(@) y[n] = n x[n]
For two input sequences x,[n] and x;[n], the corresponding outputs are
yi[n] = nx;[n] and y,[n] = nx,[n]
A linear combination of the two input sequences results in the output
H[a,x;[n] + a,%;[n]] = n[a,x,[n] + axx;[n]] = na,x,[n] + nax;[n] (1)

Clntthe other hand, a linear combination of the two outputs results in the
ou

a,y1[n] + a,y,[n] = a;nx;[n] + a,nx;[n] (2)
I$in¢:e the right hand sides of (1) and (2) are identical, the system is
inear.
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Examples

(b) y[n] = Ax[n] +B

Assuming that the system is excited by x,[n] and x;[n] separately, we obtain the
corresponding outp uts

yinl =Ax;[n]+ B andy,=Ax[n] +B
A linear combination of x,[n] and x;[n] produces the output

Alax[n] +azx[n]] + B

ya[n] = Hlax,[n] + azx;[n]] =
+ B (3)

]
= Aaxy[n] + Aagx[n]

On the other hand, if the system were linear, its output fo the linear combination
of x,[n] and x,[n] would be a linear combination of y,[n] and y,[n], that is,

a,y,[n] + azy;[n] = a,Ax,[n] + a,B + aAx;[n] + a,B (4)
Clearly, (3) and (4) are different and hence the system is nonlinear. Under
what conditions would it be linear?

Lecturer: WARQAA SHAHER 104 Dept. of Computer and Software Engineering



xz ) Each T represents a
delay of T time units

There are N-1 delays

l j.'(f) .
b(e)= ty x)+ a1t -T) s+ ay, e~ ¥ -T)= Y g, x(t—47)
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Tutorial

Tutorial

Q5:Determine whether following systems are
linear or non linear.

(a) Squarer y(t)=x*(z)

d X V
(b) Differentiation »()=—x(r) . ()29,

(c) Integration ()= I x(w)du X9, f (0)a |,

—
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Classification of Discrete Time
Systems (DTS)

Causal versus Noncausal Systems
BA system is said to be causal if the output of the s{stem at any time n

[i.e. y[n]) depends only on present and past inputs [I-e x[n], x[n-1]....]but
does n:::% depend on future inputs [i.e. xﬁ1+1], X[n+2]...1]. f!t

he system
does not satisfy this definition, it is called noncausal.

Example: Determine if the systems described by the following input-
output equations are causal or noncausal.

(a) yIn] = x[n] = x[n-1] (b) y[n] = ax[n]
(¢) yIn] = x[n] + 3x[n+4] (d) y[n] = x[n]
(e) yIn] = x [-n]

Solution:

The systems (a), (b) are causal, all others are non-causal. y[n]=x[-n] is
non-causal because y(-1)=x(1)! Thus the o/p at n=-1 depends on the i/p
at n=1, which is two units of time into the future:

Future
value!
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Classification of Discrete Time
Systems (DTS)

Stable versus unstable Systems:

B A system is stable if any bounded input produces
bounded output (BIBO).

B Otherwise, it is unstable!

B The condition that the i/p sequence x(n) & the o/p
sequence y(n) are bounded is translated mathematically
to mean that there exist some finite numbers.

Say M, & M,, such that
Ix(n)|<=M,<inf |y(n)|<=M,<inf for alln.

If, for some reason bounded i/p sequence x(n), the o/p
s unbounded (infinite), system is unstable.
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Classification of Discrete Time
Systems (DTS)

Invertibility:
BA system is said to be invertible if the input to the system may be
uniguely determined from the oufput.

» In order for a system to be invertible, it is necessary for distinct inputs to
produce distinct outputs.

» In other words, given any two inputs x,(n) and x,(n) with x,(n) # x,(n), it
must be true that y,(n) # y.(n).

B This property is important in applications such as channel
equalization and deconvolution is inveribility.

Example. The system defined by
y(n) = x(n)g(n)
Solution: is invertible if and only if g(n) # O for all n. In particular, given

y(n) with g(n) nonzero for all n, x(n) may be recovered from y(n) as
follows: y(n)

=
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Summary

B |f several causes are acting on a linear system,
then the total effect is the sum of the responses
from each cause

B |n time-invariant systems, system parameters do
not change with time

B For memoryless systems, the system response
at any instant n depends only on the present
value of the input (value at n{

E |f a system response at n depends on future
iInput values (beyond n), then the system is
noncausal.
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Basic Operations on Signals

Operations performed on dependant variables:
¥ Amplitude scaling

Let x(t) denote a continuous time signal. The signal v(f) resulting
from amplitude scaling applied to x(t) is defined by

y (t) = cx(t)
where c is the scale factor.

In a similar manner to the above equation, for discrete time
signals we can write

yInT]l=cXx[nT]

&

2x(t)

T x(t)
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Basic Operations on Signals

B Addition

Let x,[n] and x,[n] denote a pair of discrete time signals. The
signal y[n] obtained by the addition of x,[n] + x,[n] is defined as

y[n] =x,[n] + Xx,[n]
Example: Audio mixer

B Multiplication

Let x,[n] and x,[n] denote a pair of discrete-time signals. The
signal y[n] resulting from the multiplication of the x,[n] and x,[n] is
defined by

y[n] = x;[n].x,[n]
E)Eample: AM Radio Signal
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Basic Operations on Signals

Operations performed on independant variables:
B Time scaling

Let y(t) is a compressed version of x(t). The signal y(t)
obtained by scaling the independent variable, time t, by
a factor k is defined by

y(t) = x(kt)

> if(k) > 1, the signal y(t) is a compressed version of
X(t).

» If, on the other hand, 0 < k < 1, the signal y(t) is an
expanded (stretched) version of x(t).
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Basic Operations on Signals

10

1 I | I I I I | I |
1

&t Example of expansion and compression e -
1

o 11 exp(-0.5t) 7
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Lecturer: WARQAA SHAHER 114 Dept. of Computer and Software Engineering



Basic Operations on Signals

Time scaling of discrete-time signals

—_ 1 % '
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Basic Operations on Signals

P Time Reversal

» This operation reflects the signal aboutt=0
and thus reverses the signal on the time

scale.
_5 P P o D
C
| S
> 0
D |
0
0 1 2 3 4 5
0 ] T T
r— 0N
C L _\I
|
| S
>
- ' S S
0 1 2 3 4 5
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Basic Operations on Signals

B Time Shift

A signal may be shifted in time by replacing the independent variable n by n £ k,
where k is an integer. If K is a positive integer, the time shift results in a delay of
the signal by k units of time. If k is a negative integer, the time shift results in an
advance of the signal by |k| units in time.

x[n-3] . Delay
x[n] =
ih i;II III lt ; I EI. ‘I:
X[n+3] .| Advance
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Linear Time-Invariant (LTI)
Systems

Linear Systems

It a system 1s linear, this means that when an input to a given system is scaled by a value,
the output of the system is scaled by the same amount.

Linear Scaling

x»—i,;_ﬁ—n[} X X ma_

(=) (%)

Figure
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Linear Time-Invariant (LTI)
Systems

* Linear Systems

It a system 1s linear, this means that when an input to a given system 1is scaled by a value,
the output of the system is scaled by the same amount.

In part (a) of the figure above, an input x to the linear system L gives the output y If x
is scaled by a value a and passed through this same system, as in part (b), the cnutput. will
also be scaled by a.

A Tinear system also obeys the principle of superposition. This means that it two inputs
are added together and passed through a linear system, the output will be the sum of the
individual inputs’ outputs.

That is, if (a) is true, then (b) is also true for a linear system. The scaling property
mentioned above still holds in conjunction with the superposition principle. Therefore, it
the inputs x and y are scaled by factors a and (3, respectively, then the sum of these scaled
inputs will give the sum of the individual scaled outputs:
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Linear Time-Invariant (LTI)
Systems

* Linear Systems

Superposition Principle

Figure : If (a) is true, then the principle of superposition says that (b) is true as
well. This holds for linear systems.
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Linear Time-Invariant (LTI)
Systems

* Linear Systems

Superposition Principle with Linear Scaling
ax, —{ £ [« ?} pra —{ ¢ [ By

mx,f-ﬁixz-—{g(—** K. +Ba=

(b)

Figure : Given (a) for a linear system, (b) holds as well.
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Linear Time-Invariant (LTI)
Systems

* Time-Invariant Systems
A time-invariant system has the property that a certam mput will always give the same
output, without regard to when the input was applied to the system.
In this figure, z (t) and z (t - tg) are passed through the system TI. Because the system
TT is time-invariant, the inputs z (f) and z (t - tg) produce the same output. The only
difference is that the output due to z (t - tg) is shifted by a time .

Whether a system 1s time-mvariant or time-varying can be seen in the differential equa-
tion (or difference equation) describing it. Time-invariant systems are modeled with constant
coefficient equations. A constant coefficient differential (or difference) equation means that
the parameters of the system are not changing over time and an mput now will give the
same result as the same mput later.
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Linear Time-Invariant (LTI)

Systems
* Time-Invariant Systems

Time-Invariant Systems

;-:(f,}'—ﬁ_jl—"-"' Bfﬂ K(é‘f‘g) —N Tl [— a_(f': {:ﬁ)
(a) (b)

Figure  : (a) shows an input at time t while (b) shows the same input #; seconds
later. In a time-invariant system both outputs would be identical except that the one in

(h) would be delayed by .
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Linear Time-Invariant (LTI)
Systems

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.

As LTT systems are a subset of linear systems, they obey the principle of superposition. In
the figure below, we see the effect of applying time-invariance to the superposition definition
in the linear systems section above.

Linear Time-Invariant Systems

k)T [— a&j o4, :-:(t—é.,\j -—?'—*ﬁ E}Cé‘ﬁa)
(a) (b)

Figure : This is a combination of the two cases above. Since the input to (b) is a
scaled, time-shifted version of the input in (a), so is the output.
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Linear Time-Invariant (LTI) Systems

Superposition in Linear Time-Invariant Systems

K.CE‘} LT’JY-—-—'} fa,{é}l }ftfﬂ——?_—.,,a‘&)
(@)

%X, (4-¢,) +{5xz(é't,_) "{'ﬂ—’ p(a,(t-t“”. Ig,ar_(&*f

(b)

Figure : The principle of superposition applied to LTI systems
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Linear Time-Invariant (LTI)
Systems

"LTT Systems in Series”

It two or more LIT systems are m series with each other, their order can be mterchanged
without affectmg the overall output of the system. Systems in sertes are also called cascaded
systelns,

"LTT Systems in Parallel”

It two or more LIT systems are m parallel with one another, an equivalent system 15 one
that 15 defined as the sum of these ndividual systems,
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Linear Time-Invariant (LTI)
Systems

Cascaded LTI Systems

Lo
*f Ht] »[H,} >

Ce)

Figure : The order of cascaded LTI systems can be interchanged without changing
the overall effect.
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Linear Time-Invariant (LTI)
Systems

Parallel LTI Systems

S [XT =

() (b))

Figure : Parallel systems can be condensed into the sum of systems.
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Analysis of DT-LTI system

There are two basic methods for
analyzing the behavior or response of a

Linear system to a given input signal.

1.

2.

Method based on direct solution of input-
output equation for the system.

Decomposition of the input signal into a sum

of elementary signals (usually samples)

— Elementary signals are selected so that the response of
the system to each signal component is easily
determined.
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Difference Equations

B Difference eqs can be used to describe how a
linear, time-invariant, causal digital system
WOrkKs.

B |f present I/p & o/p X[n] & y[N]
then the preceding I/ps & o/ps
X[n-1], x[n-2]....& y[n-1], y[n-2]...s0 on.
B Using these notations, the most general
expression of the diff: eq: Is
apy[n]+ay[n-1]+ay[n-2]+...+agy[n-N
= boX[n]+b,X[N-1]+b,X[N-2]+...+by, X[n-M]

Weightings
or
Coefficients
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Difference Equations

B The equation can be presented more
compactly as

Z a,y[n—k]= Z b.x[n—k]—— Eq : (1)

B If we make a;=1, theﬁqmmanﬂew

as Al M Past inputs
=Y atn-K+ Shotn-H—E:

Past outputs

B The eq:(2) form shows how each new o/p from the
system can be calculated using past o/ps, present i/ps
& past i/ps.
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Recursive Systems

B When a digital system relies on both i/ps
and past o/ps, it is referred to as a
Recursive system.

B Eq: (2) is the equation for Recursive
systems.
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Non-Recursive Systems

B\When the digital system relies only on I/ps

( present & past ), and not on past o/ps, it Is
referred to as a non recursive system.

B The following eq: gives the general form for this
kind of filter.

yn]= bxln—k]
k=0
Y[n]= box[n]+bx[n-1]+b,x[n-2]+...+b}, X[n-M]
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Example: Recursive Systems

I Example 1. A system has the
difference eq: y[n]= 0.5y[n-
1]+x[n]

1. ldentify all coefficients a, & b,.
s this a Recursive or Non-
recursive diff. eq..

3. |If the i/p x[n] is as given in
figure below, find the first 12

samples of the o/p, starting

Solution: with n=0.

1) Writing the o/ps on the left & i/ps on the right, we get
y[n]-0.5y[n- 1]=x[n].
So, a,=1, a,=-0.5, b~1.
2) Since the o/p y[n] depends on a past o/p y[n-1], the digital
system is recursive.
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Example: Recursive Systems

3) Y[0]=0.5y[-1]+x[0] = 0.5(0.0)+1.0= 1.0
(since the sys: is considered causal, the o/p cant begin until

%h]e i/p first becomes nonzero, in this case at n=0. Hence y[-

Y[1]=0.5y[0]+x[1] = 0.5(1.0)+1.0 = 1.5
Y[2]=0.5y[1]+x[2] = 0.5(1.5)+1.0 = 1.75
Y[3]=0.5y[2]+x[3] = 0.5(1.75)+1.0 = 1.875
Y[4]=0.5y[3]+x[4] = 0.5(1.875)+1.0 = 1.9375
Y[5]=0.5y{4]+x[5] = 0.5(1.9375)+1.0 = 1.9688
Y[6]=0.5y[5]+x[6] = 0.5(1.9688)+1.0 = 1.9844
Y[7]=0.5y{6]+x[7] = 0.5(1.9844)+1.0 = 1.9922
Y[8]=0.5y{7]+x[8] = 0.5(1.9922)+1.0 = 1.9961
Y[9]=0.5y[8]+x[9] = 0.5(1.9961)+1.0 = 1.9980
Y[10]=0.5y[9]+x[10] = 0.5(1.9980)+1.0 = 1.9990
Y[11]=0.5y[10]+x[11] = 0.5(1.9990)+1.0 = 1.9995
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Example: Non-Recursive Systems

B Example 2: y[n]=0.5x[n]-0.3x[n-1]
1. Identify all coefficients a, & b,.
2. Is this a Recursive or Non-recursive diff: eq:.
3. For the I/p x[n]=sIn(21Tn/9)u[n]. Find first 20
samples of the o/p.
Solution:
1) ag=1, by=0.9, b,=-0.3

2) The o/p does not depend on past o/ps, so
the system Is nonrecursive.
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Example: Non-Recursive Systems

3) Because of the u[n] factor in the o/p, the values of
the i/p before n=0 are zero.
n -1 0 1 2 3 4 5
X[n] | 0.0 0.0 0643 |0985 |0.866 |0.342 0.342
Y[n] | 0.0 0.0 0.321 |0300 |0138 |-0089 |-0274
n 6 T 8 9 10 11 12
X[n] | -0.866 | -0985 |-0643 |00 0.643 0.985 0866
Y[n] |-0.330 |-0.233 |-0.026 |0.193 |0.321 |0.300 0.138
n 13 14 15 16 17 18 19
X[n] | 0342 | -0.342 | -0.866 | -0985 |-0643 0.0 0.643
Y[n] | -0.089 |-0274 |-0330 |-0233 [-0.026 0.193 0.321
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Superposition in Diff: eq:

B [n some instances, several i/ps may be
applied to a system at the same time.

B \When this happens, the system response
to the sum of these inputs through
superposition.

B Fortunately, when the sys: is linear,
multiple inputs can be handled easily.
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Tutorial 1

B Tutorial 1: A system is described by the
difference equation

Y[Nn]=x[n]+0.5x[n-1]
Two I/ps are x,[n]=2u[n]
X,[n]=sin (n11/7)u[n]
Find and plot the first 20 samples of the

o/p resulting from the combined effect of
the 2i/ps.
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[

Difference eq: Diagrams

Non-recursive Diff:
eqs: diagram —| DELAY |——

The basic elements
used In designing

Delay element

non-recursive diff:
. -4
eq: diagrams are
+ Delay element Coefficient multiplier

+ Coefficient multiplier

+ Summer ﬁ_

Summer
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Difference eq: Diagrams

B A general non-

recursive diff: eq: e | D () g

described previously Delay
can be presented

schematically as 4,®

below.

L

Delay

b

Non-recursive Difference
equation Diagram
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Difference eq: Diagrams

B Exampled: Draw a

diagram for the diff:  xqn] B Q y[n]
eq |

y[n]=0.5x[n]+0.4xX[n- Delay

11-0.2x[n-2]

Solution: 4’@
De;lray

i
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Tutorial 2

B Tutorial 2: Write the

diff: eq: that - | -4

corresponds to the Doray
diagram given below l
Delay
>
Y
Delay

— >
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Difference eq: Diagrams

B Higher order system can be broken down
Into second order chunks, and cascaded
together.

B \When the order of the system is odd, a
single first order section is added to the
group of 2" order section.

B The following example illustrates this
point.
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Difference eq: Diagrams

B Example4: Find the difference eq: of the
following cascaded diagram

x‘l[“] FH“I[“]:){E[“] :/ﬁ[“]=x3["] _ ".I":![“]
3

L y
Delay Delay

Solution:
The first stage produces the diff: eq:Y ,[n]=x,[n]-0.1x,[n-1]+0.2x,[n-2]
The 2nd stage produces the diff: eq:Y,[n]=x,[n]+0.3x,[N-1]+0.1x,[n-2]
The 3rd stage produces the diff: eq:Y ;[n]=x,[n]-0.4x;[n-1]

The final diff: eq: will become y,[n]=x,[n]-0.2x,[Nn-1]+0.19x,[n-2]-
0.058x,[n-3]-0.008x,[n-5]
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2. Recursive difference

equations X[n] ,@ _@ yin]

1. Direct form 1 ¥
Realization Delay Delay

B In this form, the diagram

of recursive diff. eq: can | b {I_
be made by using the | 1 1 ,

previous diagram : ; i

elements. Etm : : Delay
B The general recursive

diff: eq: described :Eﬁ/\ /{I/u]

previously cab be

depicted as, Recursive Direct Form 1 Realization

Difference equation Diagram
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Difference eq: Diagrams

B Exampled: Draw a direct form1

realization diff: eq: to describe A = ,@ {["]
.

the recursive system.
y[n]+0.5y[n-2]=0.8x[n]+0.1x[n-
1]-0.3x[n-2] Delay Delay

Solution: Rearranging the eq:
we get

y[n]=-0.5y[n- A’EH
2]+0.8x[n]+0.1x[n-1]-0.3x[n-2]
Delay Delay

g

Dept. of Computer and Software Engineering
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Difference eq: Diagrams

2. Direct for 2 Realization

» The Form 1 realization is not the most efficient to
Implement a recursive diff: eq:

» A much efficient way to implement recursive diff: eq:
is direct form 2 realization.

» This realization requires the use of an intermediate
signal w[n] that records salient information about the
history of the system in place of past i/ps and past
o/ps.

» The two eqgs: that define DF2 realization are
wn]= x[n]- Z] a,wiln — k]

yv[in] = Z B.wiln — k]
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Difference Equation

A discrete-time signal s (n) is delayed by n, samples when we write s (n — ng), with ng > 0.
Choosing ng to be negative advances the signal along the integers. As opposed to analog
delays (pg ?77). discrete-time delays can only be integer valued. In the frequency domain,
delaying a signal corresponds to a linear phase shift of the signal’s discrete-time Fourier
transform: s (n — ng) « e~ (27/m0)§ (e327]),

Linear discrete-time systems have the superposition property.
Superposition
S(ayz) (n) + azz2 (n)) = a1 S () (n)) + a2S (z2 (n))

A discrete-time system is called shift-invariant (analogous to time-invariant analog sys-
tems (pg 77)) if delaying the input delays the corresponding output.

Shift-Invariant

IfS(z(n))=y(n),ThenS (z(n—ng)) =y (n— np)
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Difference Equation

We use the term shift-invariant to emphasize that delays can only have integer values in
discrete-time, while in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are hoth linear and shift-invariant. It waill
he these that allow us the full power of frequency-domain analysis and implementations.
Because we have no physical constraints in "constructing” such systems, we need only a
mathematical specification. In analog systems, the differential equation specifies the input-
output relationship in the time-domain. The corresponding discrete-time specification is
the difference equation .

The Difference Equation

yn)=ayn-1)+..+ayn—p)+bhx(n)+bhzn-1)+ ..+ bz(n—gq)

Here, the output signal y(n) 1s related to its past values y(n—1), [ ={1,...,p}, and to the
current and past values of the mput signal x (n). The system’s characteristics are determined
by the choices for the mumber of coefficients p and g and the coefficients’” values {a, ..., a,}

and {by, by, .... by ).
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Analysis of DT-LTI system

B The second method for analyzing the behavior of LT]
system to a given i/p signal is first to decompose or
resolve the input signal into a sum of elementary signals.

B The elementary signals are selected so that the
response of the system to each signal component is
easily determined.

B Then using the linearity property of the sys, the
responses of the system to the elementary signals are
added to obtain the total response of the sys to the given
I/p signal.

B The elementary signal we choose to analyze LTI system
IS Impulse signal.
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Resolution of DT signals into Impulses

Suppose we have an arbitrary signal x[n] that we wish to resolve into a
sum of unit sample sequence.

Consider the product of a signal x[n] and the impulse sequence &[n],
written as x[n]d[n]
Since 8[n]=1 only at n=0,so0 we can write
x[n]d[n] = x[0]0[n]
If we were to repeat the multiplication of x[n] with d[n-k], where & [n-k]

is time shifted impulse sequence, the result will be a sequence that is
zero everywhere except at n=k,

x[n]o[n-k] = x[k]o[n-k]
This property allows us to express x[n] as the following weighted sum
of time shifted impulses:

x[n] = ... + x[-2]8[n+2]+ x[-1]][n+1]+ :-:[D]G[n] + x[1]8[n-1] + x[2]8[n-2]+...
Or in concise form as:
x[n]= Z [ k]5|n— k]«-ﬁ__\\

k=—w

Right hand side gives us the resolution o
any arbitrary signal ®[n] into weighted
sum of shifted unit sample sequences.
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Impulse Response of LTI System

The impulse response 15 exactly what 1ts name mphes - the response of an LTT system,
such as a filter, when the system’s mput 1s the umt mpulse (or umit sample). A system
can be completed descrihe by 1ts impulse response due to the 1dea mentioned above that
all sigmals can be represented by a superposition of signals, An mpulse response gives an
equivalent description of & system as a transter fucntion, since they are Laplace Transforms

of each other,

NOTATION:  Most texts use d(t) and d[n| to denote the contimuous-time and
discrte-time mpulse response, respectively.
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Impulse Response of LTI System

The response of a system to the unit input 0/n] is called the Impulse Response,
normally written as hn|

[n the case of Linear-Time-[nvartant (LTT) systems it conpletely character-

1z¢s their behavior. This 1s because every mput sequence can be described as
2 Imear combmation of delayed copies of the unit sequence, and using lnear-

ity and time-Invariance, the reponse can be bult as a superposition of delayed
mpulse reponses. Such superposition can be wntten as the sum:
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Impulse Response of LTI System

Z z[klh[n — k] = Z z[n — k|h[k] = x[n] * h|n]
called convelution of the input and the impulse response.
The convolution has interesting properties, such as commutativity (rxy = y=*
r), associativity ((x*y)*z = r*(y+*z)) and distributivity (z*(y+z) = r*y+x*2z).
Furthermore, properties of LTI systems are simply described by h[n/:
e Stability: A system is stable it and only if the impulse response is abso-
lutely summable (3.7 |z[n]| < o)
e Causality: A system is causal if and only if its impluse response is a causal
signal.

Finally, simple interconnection schemes of systems result in simple compo-
sition of the impulse response:

e Cascade connection: The impulse response is the convolution of the re-
sponses (hio: = Iy * ha). Important consequence is the fact that order is
not important in cascade connections. Stability, passivity and losslessness
are preserved.

e Parallel connection: The response 1s the sume of the responses (hi.; =
Iy + ho). Stability is preserved.
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Impulse Response of LTI System

The unit impulse was described above as:

S[n] = 0, n # 0O

dn] =1, n =0
This i1s also sometimes known as the Kronecker delta function
This can be tabulated

n | -2 -1 0 1 2 3 4 5 6
S[nj | o 0 0 1 0 0 0 0 0 0 0
S[n-2] 0 0 0 0 0 1 0 0 0 0 0
5(n-2]
|
- e |

1-2 0123 4

LA

n ————=

Shifted impulse sequence, d[n — 2]
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Impulse Response of LTI System

The third row of table 1 gives the values of the shifted impulse 6[n — 2]

Now consider the following signal:
x[n] = 28|n | + 48|n — 1] + 68|n — 2] + 48|n — 3] + 28|n — 4]

Table 2 shows the individual sequences and their sum.

n -2 -1 0 1 2 3 4 5 (3

28[n] 0 0 0 2 0 0 0 0 0 0 0
45[(n-1] 0 0 0 0 4 0 0 0 0 0 0
68[n-2] 0 0 0 0 6 0 0 0 0 0
45n-3] 0 0 0 0 0 0 4 0 0 0 0
28[(n-4] 0 0 0 0 0 0 0 2 0 0 0
xfnj 0 0 0 2 4 6 4 2 0 0 0
Table 2

Hence any sequence can be represented by the equation:
xn] =3 xk]d[n— k]
k

=+ x[-1]8[n + 1] + x[0]&n] + x[1]8[n - 1] + x[2]8[n - 2] +.......

When the input to an FIR filter is a unit impulse sequence, xfnf = 8fn/. the output is known as the unit impulse
response, which is normally donated as hfn].
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Suppose that a sienal x[n| 1s e1ven as input to a linear
¥

system

First, let us look at z|n|d[n — k] as a function of

—

n € 4, where k 1s fixed.

ikl fn=k
rn|dn — k] = ;]" | ;f : Lk
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Impulse Response of LTI System

This holds for any fixed £,

Z rlkloln — k| = z|n

k=—m0
This 15 the sifting property.
The system 1s linear. It the response of the system to
dln — k| (where k is fixed and n € Z) 1s hy[n|, then
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Impulse Response of LTI System

the output of the system for x[n| is given by

y[n| = Z x|k|hy[n]

k=—nc

If in addition, the system is time-invariant(LTT), then
if we let hg[n| = h[n| to be the response to d[n|, then
hi.[n| = hin — k|, so we have

o0

y[n| = Z r|klh|n — k

k=—oo
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Impulse Response of LTI System

Summary

hin| is the response of an LTI system to d|n| and is

called the impulse response of an LTT system. Then

yln| = ,—_ . z[k|h[n — k| is the response of the

system to z[n.
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Impulse Response & Difference Eq:

B When I/p to a system Is a unit impulse function
the o/p from the sys: is the unit impulse
response as shown in figure.

Impulse function Digital sys Impulse response

_ I Mlj_f
B The diff: eq: for a sys can be used to calculate
the iImpulse response for the system.

B Just replace x[n] by §[»] and y[n] by h[n] an
further steps are usual.
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First, replace x[n] with &[7]and y[n]
with h[n] to give

h[n]-0.4h[n-1]= &[n] - Sln—1]

Example7: Find the first 6
samples of the impulse for the

different equation.

Y[n]-0.4y[n-1]=x[n]-x[n-1]
Solution:

Starting with n=0:

h
h

h

0
0
And further... h[1]=-0.6
=-0.24; h[3]=-0.096; h[4]=-

2]

1=0.4h[-1]+8[0]-3[-1]
=0.4(0.0)+1.0-0.0=1.0

0.0384; h[5]=-0. 01536
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1. ) Infinite Impulse Response (lIR)

B [n previous example, the impulse
response never dies away. Reason is the
new o/ps depends on old o/ps.

B The impulse response that never dies
away or tends to infinite is called |IR and is
typical for recursive diff: eq:.
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B Example8: Find & plot first 6

samples in the impulse response for,

the system

y[n]=0.25(x[n]+X[n- 1]+x[n-2]+x[n-3]) |
Solution:

Substituting symbols for impulse :

Infinite Impulse Response (lIR)

response we get
h[n]=0.25(0[n]+3[n-1]+3[n-2]+0[n-3])

45t

S0 we get, ;
h[0]=h[1]=h[2]=h[3]=0.25; h[4]=h[5]=0.0
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Finite Impulse Response (FIR)

B In example#8, note that the impulse
response drops to zero after a finite no of
nonzero samples.

B If the Iimpulse response drops to zero after
a finite no: of nonzero samples the
response Is said to as FIR and is typical
for non-recursive diff: egs:.
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Step Response & Difference Equations

B [tis aresponse for a system to a unit
step function.

B Step function (i/p) is u [N]
B Step response (0/p) is s [N]

B There are two simple ways to find the

step response for a SYS.
1. Use of diff: eq: with u[n] as i/p
2. Determine impulse response and sum it
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Tutorial 3

B Tutorial#3:
Find & plot the step response for the system
y[n]-0.2y[n-2]=0.5x[n]+0.3x[n-1]
by the following methods:
1. Use of diff: eq: with u[n] as i/p
2. Determine impulse response and sum it
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Step Response of an LTI System

The step response of an LTI system 15 smply the response of the system to a unit step. It conveys
a lot of mformation about the system. For a discrete-time system with mpulse response /[n], the

step response 15 §[n] = u[n]* i{n] . However, based on the commutative property of convolution,
s[n]=h[n]*u[n], and therefore, s[n] can be viewed as the response to mput /] of a discrete-

tme LTI system with umt mpulse response. We know that #[n] 15 the umt mpulse response of
the accumulator. Therefore,

UE ih[k].
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Step Response of an LTI System

From this equatton, {n] can be recovered from §n] ustng the relation

M) =s{n]-s[n-1].

It can be seen the step response of a discrete-time LTI system 1 the rumning sum of ifs impulse
response. Conversely, the mpulse response of a discrefe-tme LTI system 15 the first difference
of 1fs step response.
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Step Response of an LTI System

Smularly, m contmuous time, the step response of an LTI system 1s the running mtegral of 1ts
impulse response.

and the unit impulse response 15 the fust dertvative of the unit step response,

_as(r)

]F(f)—w—

5'(1).

Therefore, m both contmuous and discrete time, the umit step response can also be used to
characterize an LTI system.

Lecturer: WARQAA SHAHER 173 Dept. of Computer and Software Engineering



Step Response of an LTI System

The unit impulse response can be derived from the

unit step response as

ds(t)

hit) = g7

(t)

In discrete time
s[n] = u[n| * h[n| = Z h[k]
k=—oo
hin| = s[n| — s[n — 1]
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Discrete-Time Convolution

If h(n) 1s the system 1mpulse response, then the input-output
relationship 1s a convolution.

It 15 used for designing filter or a system.

Definition of convolution:

y(n)=hn)*x(n)= gh(i)x(n —A)

v(n)=x(mn)*h(n)= E.I(i)fi’(” )
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Discrete-Time Convolution

The simplest example of convolution 1s the multiplication of two polynomaals. e.g.

y=(4x"—3x+9)(3x +4x+4)

This 15 calculated by:
y= (f:4.1'3 x3x')+ (—11’3 X 4I)+ (41’: X 4)} ((—31‘ X 31’:)+ (<33 x 4x )+ (-3x x 4)} ((f} X 31‘1)+ (9xdx)+(9x4 ]]
y=12x" +16x7 +16x7 - 9x" =12x" -12x+27x" + 36x + 36

y=12x" + 70" +31x7 + 24x+ 36

Convolution 15 a weighted moving average with one signal flipped back to front.
M
yn]= ) Wk} k]
=i
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Discrete-Time Convolution

A tabulated version of convolution

n n<0 0 1 2 3 4 5 O 7 n<7
x[n] 0 2 4 6 4 2 0 0 0 0
h[n] 0 3 -1 2 1

h[0]x[n] 0 6 12 18 12 6 0 0 0 0
h1]x[n-1] 0 0 -2 - -6 -4 -2 0 0 0
h[2]x[n-2] 0 0 0 4 8 12 8 4 0 0
h[3]x[n-3] 0 0 0 0 2 4 6 4 2 0
v[n] 0 6 10 18 16 18 12 8 2 0
hf0]xfn] = x[0] * WfO] +x[1] * h[0] +x[2] * hfO] + x[3] * hfO] + x[4] * h[0]

hiO]xfn] = 2%3 + 4*3 + 6%*3 + 4 * 3 + 2 * 3

hi0]xfn] = 6 + 12 + 18 + 12 + 6

hf1jx[n-1] = x[0] * hf1] + x[1] * hf1] + x[2] * h[1] + x[3] * h[1] + x[4] * h[1]
hfljxfn-1]= 2%-1 + 4%-1 + 6%-1 + 4% -] + 2 * _]

mfljxfn-1]= -2 + -4 + -6 + 4+ -2
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Discrete-Time Convolution

The diagrams below show how convolution works.

2
I1 1_1
0 0123
A single impulse input yields the system’s impulse response
4
.
2
22 2
| ‘ ‘ ‘
0
0123

A scaled impulse input yields a scaled response. due to the scaling properry of the system's linearity.
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Discrete-Time Convolution

2

0 1

=

01

o

I

1is aemonstrates the use the ime-invariance property of the system to show that a delayed mput results in an
output of the same shape, only delayed by the same amount as the input

z
z 2 2
T
3 g
[T = T :
01234 3 ‘
! - 1
2 = e - -
—>| fe }—r 1.1
| 01 o
o

0L 234

o —r
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Discrete-Time Convolution

This now demonstrates the additivify portion of the linearity property of the system to complete the
picture. Since any discrete-time signal 1s just a sum of scaled and shifted discrete-fume mmpulses, we can find the
output from knowing the nput and the impulse response

No 1f we convolve x(n) with h(n) as shown i Figure 9 we will get the oufput y(n)

0l n13 n12314

This 15 the end result that we are lookang to find
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11

Z

210 1

of the impulse response.
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[0 = f[-0] =1 x2=2

181

{p0] > B[L]) + (=[1] = K[D])=1+4=5
Continuing the traverse. At time 1 | the two elements of the input signal are mmltiplied by two elements
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Discrete-Time Convolution

Iy

T = ,
3
o 1
=2
1 1 1
Lo 1|2 2
(] > R[2]) +i(x1] =< L1]) =1 +2=3
re — B |
o
L 1
2
1 1 1
0} 1 > 3 :_:I-
(] > ][3I} + (=[1] =< £[Z2]) =1 +2=23
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Discrete Time Convolution

Overview

Jonvolution is a concept that extends to all systems that are both linear ancl time-Invariant |Lll| The

1 [llsCl‘EtE tl[IlE mnvnlutmn s exactly the same 11 at of continuous-time ¢ ll I this
easou, mei}; be useful to look at both versions to help your understa LllIl“ 1115 e lu mportant
ecall that convolution is a very powerful to lm 1 CLIININg & system's o m[ [rom knowledge of
|u ary nput and the system’s impu la tesponse. 1t will also be helpful to see convolution graphically
wllh vour own eves and to play around with it some, so experiment with ll‘& plets available on the
net. These resources will offer different approaches 1 lua Icial concept,
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Discrete Time Convolution

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an
LIT system based on an arbitrary discre unvnmulﬂmuﬂamlﬂmhymmnhrmpme Lhe convolution

st Is expressed as
0C

yil= Y, elh-H

k=—0

As with continuous-time, convolution is represented by the symbol *, and can he written as

y[n| =z ] «h|n]

By making a simple change of variables into the convolution sum, k = n -k, we can easily show that
convolution is commutative;

eln|«hn=hn|«zn
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Discrete-Time Convolution

Let us call z[n| x hin] =) ,—__ z[k|h[n - k| the

convolution of .r[n] and hin}.

¢ The response of an |

yln| = zin
response o

Lecturer: WARQAA SHAHER
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%
!
!

[TT system to zn| is given by

n, W)

lere hin| is the impulse

“the system.

185
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Discrete-Time Convolution

- R L3 o [ 1 — o - - | F -_- _ -
Let us consider z[n| = h(n] =3_,— __ x|k|h[n — K]
Let n — k=m.then kE=n —m

Z rlklhln — k] = Z r(n — m|h|m| = h{n| * x[n]

.Eu':—':-c: = — 2

s0 convolution 18 commmutative.

Notation:
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Discrete-Time Convolution

This means that the box 15 an L'T1 system with

impulse response hin|. In the other case:

It can be shown that the convolution operation is

assoclative and distributive.

Associativity:
(z|n] * hq[n|) * ha|n]| = x[n| * (h1|n] * ha[n])
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Distributivity:

x[n] * (hi[n] + h2[n]) = xz[n] = hi[n] 4+ x[n] * ha[n]
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Discrete-Time Convolution: Example 1

Example:
5 | :I' WO T
hin] = w[n], and x[n] = a™u[n], || < 1, what is y[n]?
xn]=o"ulrmn] hn—Ek]l=uln—Kk]
T o
[ts
or
— e T v — o
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Discrete-Time Convolution: Example 1

y|n| = z[n| * hin| = Z r|k|hln — K|
If n < 0, then z|klhjn — k| =0, so z[n| * hin] =0

_ _ a®*, 0<k<n
If n >0, then z|klhjn — k| = 1

(). otherwise

%,

so z[n] * h[n] = 33} _ga* = 325

n-41
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Discrete-Time Convolution: Example 1

Mathematically,

r(k|h[n — k|

1]

r[n| * hjn] =

-
I

—

o u k|h[rn — K]

||
ML

k=—oc
— Z a” ulk|h|jn — k|
=1
- ::’z 0 a® n>=>0
N 0 n < 0
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Discrete-Time Convolution: Example 2

Consider a system with an impulse response of
hn)=[1111]

[f the mput to the signal 1s
x(m)=[11]

* Thus, the output of the system1s  y(n) = Zh(i)x(m - 4)

A==

* The result of the convolution procedure in its graphical form 1s :
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i) )

L
-3

1]

i) The definition of the system impulse response h(n) and the input signal x(n)

h(A) x(0-1)

h{4) ¥(0-4)

> A .

v(0) = i h(A)x(0—A) =1
A=—0
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i1) The result at n=1.

hid)

TrYLY -
—————

————

x(1-4)

L 3

01 2

3

Lecturer: WARQAA SHAHER

hia) x(1-4)
()= D h(A)x(l-2)=2
1 & I . T A=—x
: : e A

hid) x(2-4) -

t v(2) = Zh(/{).r(l—/l): 2

1441

1
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Discrete-Time Convolution: Example 2

iV) At n=3

h(.a) x(3-4) hi{A) x(3-4)

—> v = D h(A)x(3-1)=2
BRI | o T
R H, H

v) At n=4

TEN x¥{4-1) M A) x(4-4)

— v(4)= D h(A)x(4-2)=1

A=—ao

-
=
-
L
.
) f—
L
T
==
—
|
r
Y

Finally 2
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Performance of Convolution

B Convolution can be performed in
numerous ways. Some of those are:
» Direct-evaluation
» Graphical method
» Slide-rule method
» Fourier transform, and
» Z-transform
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Deconvolution

Unwanted convolution is an inherent problem in transferring analog
information. For instance, all of the following can be modelled as a
convolution: image blurring in a shaky camera, echoes in long distance
telephone calls, the finite bandwidth of analog sensors and electronics, etc.
Deconvolution is the process of filtering a signal to compensate for an
undesired convolution.

The goal of deconvolution is to recreate the signal as it existed before the
convolution took place. This usually requires the characteristics of the
convolution (i.e., the impulse or frequency response) to be known. This can
be distinguished from blind deconvolution, where the characteristics of
the parasitic convolution are not known. Blind deconvolution is a much
more difficult problem that has no general solution, and the approach
must be tailored to the particular application.
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Deconvolution

Deconvolution is nearly impossible to understand in the time
domain, but quite straightforward in the frequency domain. Each
sinusoid that composes the original signal can be changed in
amplitude and/or phase as it passes through the undesired
convolution. To extract the original signhal, the deconvolution
filter must undo these amplitude and phase changes.

For example, if the convolution changes a sinusoid's amplitude by
0.5 with a 30 degree phase shift, the deconvolution filter must
amplify the sinusoid by 2.0 with a -30 degree phase change.
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Deconvolution

Reverse of Convolution

=> |Inverse Filtering

¢ Aim of Deconvolution
1. Theoretical: Reconstruction of the Reflectivity function

2. Practical:

e Shorting of the Signal

e Suppression of Noise

e Suppression of Multiples
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Deconvolution

In mathematics, deconvolution is an algorithm-based process used to reverse the effects of convolution on recorded data.- The concept of deconvolution is
widely used in the techniques of signal processing and image processing. Because these techniques are in turn widely used in many scientific and engineering
disciplines, deconvolution finds many applications

In general, the object of deconvolution is to find the solution of a convolution equation of the form:

fxg=h

Usually, his some recorded signal, and f is some signal that we wish to recover, but has been convolved with some other signal g before we recorded it. The
function g might represent the transfer function of an instrument or a driving force that was applied to a physical system. If we know g, or at least know the form of g,
then we can perform deterministic deconvolution. However, if we do not know g in advance, then we need to estimate it. This is most often done using methods of

statistical estimation
In physical measurements, the situation is usually closer to

(fxg)+e=h
In this case ¢ is noise that has entered our recorded signal. If we assume that a noisy signal or image is noiseless when we try to make a statistical estimate of g,
our estimate will be incorrect. In turn, our estimate of [ will also be incorrect. The lower the signal-to-noise ratio, the worse our estimate of the deconvolved signal
will be. That is the reason why inverse filtering the signal is usually not a good solution. However, if we have at least some knowledge of the type of noise in the data
(for example, white noise), we may be able to improve the estimate of f through techniques such as Wiener deconvolution.

The foundations for deconvolution and time-series analysis were largely laid by Norbert Wiener of the Massachusetts Institute of Technology in his book
Extrapolation, Interpolation, and Smoothing of Stationary Time Series (1949).1%! The book was based on work Wiener had done during World War |1 but that had
been classified at the time. Some of the early attempts to apply these theories were in the fields of weather forecasting and economics.
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Deconvolution

Deconvolution 1s a key area 1n signal and image processing.
It 15 used for objectives in signal and 1mage processing that
include the following:

. deblurmring,
. removal of atmosphenc seeing degradation,
. correction of mirror sphenical aberration,
. Image sharpening,
mapping detector response charactenstics to those of
another,
6. 1image or signal zooming, and
7. optimizing display.

Lh da L [ —
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Correlation

r e
E'%‘ Transmitted Signal, x(n)
-

Reflected Signal,
vin) = x(n-D) + w(n)
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Correlation

A mathematical operation that closely resembles
convolution is correlation.

Just like In convolution, two signal sequences are
iInvolved in correlation.

Correlation is a measure of the similarity between two
signals as a function of time shift between them.

Correlation is maximum when two signals are similar in
shape, and are in phase (or 'unghifted' with respect to
each other).

Correlation Is often encountered in Radar, Sonar, Digital
communications etc

Correlating two different signals is called Cross-
correlation.

Correlating a signal with itself is called autocorrelation.
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Cross-Correlation

B Cross correlation can be used to identify a signal by
comparison with a library of known reference signals.

Definition: Crosscorrelation

The crosscorrelation between two signals x[n] and y[n] is
given by:

o ]

ry ()= 2 x[n]yn—1] (1)
where the time shift | is called the |ag.
OR
()= D An+){n] 2)
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Cross-Correlation

B If we reverse the roles of x[n] and y[n] in (1) and (2)
and hence reverse the order of indices xy, we
obtain the cross correlation sequence

)

ra (D=2, ynlx[n—1] (3)

H=—"0

Or, equivalently - ()= i 1)) (4)

H=—30

By comparing (1) and (4) or (2) and (3), we conclude;,
that
ro () =7 (=)

Therefore, r,,[1] is simply the folded version of r,[l].
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Cross-Correlation

B Example: Determine the crosscorrelation
sequence of the sequences

Xn]={..0,02-137,1,2-300,.)
vin]={..0,01,-1,2-241 2500}

Solution: The only difference in convolution and
crosscorrelation Is that in crosscorrelation we

don’t need to fold the sequence. Otherwise all
steps are same.
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Cross-Correlation

X[n] 2 1 3 7 1 2 3

=311 1 2 2 |4 1 2 |2 Ry (-3 )7
-14

1 1 12 |2 |4 |1 2 |5 Ry l-2)
=33

¥+ 1 1 2 2 4 1 2 5 Rx‘__,{—1 =0

Y[n] 1 1 |2 2 |4 1 2 |5 R, (07

¥in-1] 1 1 2 2 |4 1 2 |2 R, (1)=13

Yin-2 1 1 2 2 |4 1 2 |5 ol2) =
18

¥[n-3] 1 1 |2 2 |4 1 2 |2 R, (3)=16

R,,(1)={10, -9, 19, 36, -14, 33, 0, 1, 13, -18, 16, -7, 5, -3, 0}
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Auto-Correlation

B Autocorrelation is the special case of
crosscorrelation, in which one signal iIs compared
with its time shifted version.

Definition: Autocorrelation
The autocorrelation of a real signal x[n] is given by:

F(D—Z x[n]x(n—1]

H=—00

where the time shift m is called the lag.
Or equivalently as, @)=Y afn+/Jxn)

H=-—o
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Properties of Auto-correlation and Cross-correlation
Sequences

Let us assume that we have two sequences x[n] and y[n] with finite energy from
which we form the linear combination

a x[n] + b y[n-]
where a and b are arbitrary constants and k is some time shift. The energy in
this signal is

i[ﬁlx[ﬂ]ery[ﬂ —Z]I_ —a if [ﬂl-l—bg i},ﬁ[ﬂ_{]

H=—00 H=—00

+2ab i‘{[ﬂ]_}[ﬂ —[]= azrrjﬁ({))erE?:L}:(U)Jr Zczbrjt}:(f)

Note thatr,,(0) = E, and r, (0) = E,, the energies of x[n] and y[n] respectively.
It is obvious that

ﬂzrﬂ(ﬂ)-kbzﬁ},([])-k 2::1!9?@(,%) =0
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Properties of Auto-correlation and Cross-correlation
Sequences

Now, assuming that b = 0, we divide the above equation by b* to obtain

2

Ve (0)[§]h + Ern[f][gj T Ftl}' (0) =0 (3)

This is a quadratic equation. Since the quadratic is non-negative, its
discriminant must be non-positive. That is,

4[’“;[3]— ?‘_H(U)F}T(O)Jﬂ 0 (4)

Therefore, the crosscorrelation sequence satisfies the condition that
‘r:{} (E)( = ‘\XF.‘D: (O)Tu (O): ‘\XETEL (5:‘

In the special case i-e in Autocorrelation where y[n] = x[n], (9) reduces
to
. (1) <7, (0)=E, (6)
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Properties of Auto-correlation and Cross-correlation
Sequences

» This means that the autocorrelation sequence of a signal attains its
maximum value at zero lag.

» If any one or both of the signals involved are scaled, the shape of the
cross correlation sequence does not change; :::nlly the amplitudes of the
crosscorrelation sequence are scaled accordingly.

It is often desirable in practice to normalize the autocorrelation
and crosscorrelation sequences to the range from -1to 1. The
normalized autocorrelation sequence is defined as,

p ()= "D "

» g (0)
Similarly, we define the normalized crosscorrelation sequence

ol
pull)= 700 8)

Xx ¥
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1\ Properties of Auto-correlation and Cross-correlation
ok Sequences

B One other important property of
autocorrelation is that its an even function.

»\We know that r, (I)=r,, (-]), so

»If we make x[n]=y[n] (autocorrelation) the

condition becomes r, (l)=r,, (-I), Hence the
autocorr: function 1s an even function.
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Difference between Convolution and
Correlation

B Convolution is usually between a signal
and a filter; we think of it as a system with
a single input and stored coefficients.

B Crosscorrelation is usually between two
signals; we think of a system with two
Inputs and no stored coefficients.
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Lecture Outline

e Continuous Time Fourier Series

 Discrete time Fourier series

* Discrete Fourier Transform (DFT)
* Fast Fourier Transform (FFT)

e Decimation in time Fast Fourier Transform

 Decimation in frequency Fast Fourier Transform
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Fourier Series Representation

Fourier Series:

B Fourier series allows any periodic waveform in
time to be decomposed into a sum of sine and
cosine waveforms. The first requirement in
realising the FS Is to calculate the fundamental
period, T, which Is the shortest time over which
the signal repeats.

B For a periodic signal with fundamental period T
sec, the FS represents this signal as a sum of
sine and cosine components that are harmonics
of the fundamental frequency fy = 1/T Hz.
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2ant 2mnt

x(t) = Y A, cos

B The Fourier series can be Ewitten in a number c:f[dlfferen\t ways:

|+ Y B, sin
A J

9 . 1
A, cos [_}Tm\f+ B sin [‘ﬂm\f
T ) T )

[ Z

= A, +

0

]
]
—

Il
P
+

["19 *-‘;Ma

Aﬂ Cos (E;‘mfﬁr)+ B, sin (E ;‘mfnz)

A [A cos (Hr_i} I)+B 5111 (Hr:) I)]

0

5
—

- i [4, cos (ne,t)+ B, sin (ne,t)] (1)

He il
A, + A, cos (r.’:)_:,I)+ A, cos (2 m_ﬁr)+ A, cos (Sm_ﬁr)+
B, smn (r.’.) I)+ B, sm (Em, I)+ B. s (Er:r}, I)+

Where A_and B_ are the amplitudes of the cos and sin waveforms Wy = E—I'T rad /sec is angular frequency
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Fourier Series Representation

B In more descriptive language, the above Fourier Series
says that any periodic signal can be reproduced by
adding a (possibly infinite!) series of harmonically related
sinusoidal waveforms of amplitudes A, or B,..

B Therefore, if a periodic signal with a fundamental period
of say 0.01 sec Is identified, then the Fourier Series will

allow this waveform to be represented as a sum of
various cosine and sine waves at frequencies of 100 Hz

(fundamental frequency), 200 Hz, 300 Hz (Harmonics)
and so on. The amplitudes of these components are
given by A0, A,, By, A,, B, ... and so on.

B So, how are the values of A, and B, calculated??
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Fourier Series Representation

Ap
T time
T
| time
51%
| \ / time
T2
A <
| time
o]
| time
T3
Ad = R
= >
time
BA _ S N
|

L

time:

Fourier series for a periodic signal

cosine and sine wave Fourier coefficients of appropriate amplitudes A, and B,,, then
summing these components will lead to exactly the original signal

bs , : .- - ._-' ‘-I ..' =
| =~ time

fa S [hoos(2572) 6,0 (252

n=1

x(t) . If we analyse a periodic signal and realizethe
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Fourier Series Representation

For that, we multiply both sides of (1) by cos (pwgt) where p is any arbitrary
positive integer, then we get:

cos(payt)x(t) = cns(p.:q]a.‘)z [A cosnet)+ B sm(ﬂfq]a.‘]] (2)
Integrating Eq: (2) over one period, T, e get.
T

jcms{pmﬂrjx{r}dr J{cms{pmﬂa‘}z [ﬁ[ Cos (?m:r I]+B sin (H mﬂr]]}dr

1] 1]

Using the trigonometric identity 2cosAsinB=sin (A+B)-sin (A-B), and sin(2mt/T) = 0,
note that the second term in the equation (3) is equal to zero, i.e.,
T

i_[ {BH cos(payt) sin(ﬂ&bf)}df = % I {sin(p +n)at— sin(p — H)&bf}{ff
=y !

T T
e e g ] e

0 0
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|: ) Fourier Series Representation

Eq: (4) is true for all positive integers of p and n.

Using trigonometric identity 2cosAcosB=cos (A+B)+ cos (A-B), we find that the first term
of Eq: (3) is only equal to zero when p #n, i.e.,

T T
[ {;i I:nﬁ(pm:,r}:nﬂ m::r:, {” u:nﬁ[p+ H}ﬂ}:,r+cuﬂlip—njm:,r}dr=[] (9)
4]

| g
ok

If p=n, then

T
14, cos( pa, ) cos(ne,t dt = ;iﬂj cos” (na,t)dt
D

L

AT AT 6
2nwyf)de = _[1.::*: =D (6)

2 EI 2

Therefore, using Eq: {B], (), (4), and (3), we ﬂmte that:

[ {eos( poat) (o)l = 2L

. 2 1

and therefore, since p=n, 4 = ?j {cos( nw, t)x(r)}de (7)
0
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Fourier Series Representation

By multiplying Eq: (3) by sin (pw,t) and using a similar set of simplifications we
can show that:

T
B, = %J' {x(¢)sin( ne,t) }dt (8)
0

Hence, the three key equations for calculating the Fourier Series of a periodic
signal with fundamental period T are:

x(t) =Y 4, cos [ 2';&: ] + > B, sin [Z;r;m]
=0 n=1

T
4, = %j {x(t)cos( na,t) ldr
) T
B, = F{ {x(¢)sin( new,t) }dt
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Complex Fourier Series

From Euler's theorem. note that:

e!” =cos(w)+ jsin(w) cos(@) = (e*+ e )2 sin(ew)= (e —e‘”"]ﬁ 2
substituting these values in Eq: (1), and rearranging gives:
s " A " A
L THT . L THT
x(t) = A, + >, | 4, cos | | + B, sin | ']
n=l | \ y /
m [ fej:zmct+ E—jﬂm;:[ -H‘.I fgjnmct_g—jnmctﬂ‘.l
= A, + > | 4, - + B, — |
n=1| Y = A % =] z"
w | & x g ™,
= A+ Y An | Bu |ginet | An _ B E‘_WC[]
= 4, : :
R=1] % 2 2 J M 2 2.; A
™ - ™ = - ™y
_;‘IH— _.FBH | Jrar,t d‘iﬂ + ,_.FEH | - jnar,t
= 4, + Z 5 .'E T Z | ~ .'E (g}
Heml - A el M - A

For the second summation term, if the sign of the complex sinusoid is negated and the
summation limits are reversed, then we can rewrite as:

-

= f-f’i - JjB F & L . A + jB ¥ &3y I = fFe &3t
0 a5 (Ao 5 (o< S e
r=1

n=— n=—0
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Complex Fourier Series

where Cn in terms of the Fourier series coefficients of Eq. 7 and & gives:
C,=4,
C.I‘! = I:"{n _u'-"BnJ
C.=(4 +7B)
From Eq. 11 note that forn = 0,

forn =0
forn <0 “1}

2
2

. T T
C,= 4, _;B” = % _!x{a.‘] cos(ne,t)dt— j %':[ x(t) sin(na,t)dt
__jr:(a.‘ [cms(ﬁ!m r)— jsin(na, I]l —jr{[je TS Ay (12)

Forn <0, it s clear from Eq. 11 that, C,, C_ .where ™ denutes complex
conjugate. Therefore, the two impurtant equation for complex exponential Fourier

series are x _
I(I:]= Z CHEJH&}M
B = =00
1 T
C, = —j x(t)e "9 dt
I %
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Example

The ea:se of working with complex exponentials can be illustrated by this simple
example.

Example 1: Simplify the following equations in to a sum of sine waves:

sin( e f)sin( )

T'hﬁ requires the recollection (or rederivation!) of trigonometric identities to
yield:

sin( e f) sin(@,f) = %cns(fq —,)t+ %cns(fq + oy )t

However, it is relatively easier to simplify the following expression to a sum of
complex exponentials:

@ FORY
Eflgjz — e

Although, seemingly a simple comment this is the basis of using complex
exponentials rather than sines and cosines; they make the maths easier. Of
course, in situations where the signal being analysed is complex, then the
complex Fourier series must be used!

jloy+w, )t
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Fourier Transform

B The Fourier Series allows a periodic signal
to be broken down into a sum of sin and

Cos components.
B However, most practical signals are
aperiodic!

B Therefore, the Fourier Transform was
derived in order to analyse the frequency
content of aperiodic signals.
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Discrete Fourier Transform

The DT Fourier Transform (DTFT) of a finite energy
discrete time signal x[n] is defined as:

X(w)=X ()= i x[nle™”,  wel-n.7]

X(w) may be regarded as a decomposition of x[n] into its frequency
components.

» It is not difficult to verify that X(w) is periodic with frequency
27.

The Inverse Fourier Transform of X(w) may be defined as:

x[ﬁ]:zif

X(w)e!™do
T vix
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Discrete Fourier Transform

B Notation: x[n] — X(w), x[n]=F 1 X(w)). X(w)=F(x[n])
B Signal has a transform if it satisfies Dirichlet conditions.
B X(w)is called the spectrum of x[n]:

| X(w)|= magnitude spectrum,
/X (w)= phase spectrum,

The magnitude spectrum is often expressed in deceibels (dB)
B DTFT describes the frequency content of x[n]

B Forreal signals
» LX¥7w)|=LX7- @) — Even function, and
» phase _X(-o) =-_ X[n) — Odd function.

X ()= X ()] e’F@ = {

2l

X(w)= > x[n]e ™

H=—

:q::[ﬂ]:L X(o)e'"dew
2 =7
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Energy Density Spectrum of Aperiodic
Signals

Energy of a discrete time signal x[n] is defined as:

= 3 feln]

Let us now express the ézﬁér%gy EX in terms of the spectral
characteristic X(w). First we have

x

E = i Anlx’[n]= I[H]|:2_1’T J: X (m)e‘fmdm}

H=—aC H=—aC

If we interchange the order of integration and summation in the
above equation, we obtain

E, = 2—; f X*(m){ ix[ﬂ]e‘fm }dm: ﬁf

Therefore, the energy relatmn between x[n] and X(w) is
Parseval’s relation for
E,= ZL"[”]| = I|X(m)| dm{DT Aperiodic signalsj
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") Energy Density Spectrum of Aperiodic
- Signals

B The spectrum is, In general, a complex
valued function of frequency.

B The quantity S, (w)=|X(w)|? represents the
distribution of energy as a function of
frequency and it is called Energy Density
Spectrum of x(n).

BS (w) does not contain any phase
information.
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Energy Density Spectrum of Aperiodic
Signals

Example - 1: Determine DTFT and sketch the

energy density spectrum S, (w) of the sequence:
X[n]=aM u[n] lal<
Solution- 1: Y(w)= Z‘”x[ﬂ]e_jm

H=—o0

X(w)= i ae " :i (:::.r:e‘""""
Using the geometri¢ sequence, provided |al<1, this
sum Is:

1

()= 1— e

&
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B Energy Density Spectrum of Aperiodic
= Signals

Energy Density Spectrum is given by

Su (@) =X (@) = X (@)X (o)

S (o) = 1 ,_ : ,.
(1—ae7'°) (11— ae’?)
1
Sxx (G‘J): 2
l-—a(e’™ +e ™ )+ a“
5. (@) = :

_ 1-2acos o +a’ _
Figure on next slide shows x(n) and its corresponding

spectrum for a=0.5 & a=-0.5
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Energy Density Spectrum of Aperiodic
Signals

1 i
- .ﬂﬂﬂ-j
S xlons) 1 — 2a coxs o + a2
i
3
=2
1
N e ———
—ar _ = O o ™
> 2
S ey = ~ ! .a=—0.3
= 1 — 2a cos ar + a?
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Energy Density Spectrum of Aperiodic
Signals

Example — 2: Determine the Fourier Transform and the energy density
spectrum of the sequence

A, 0<n< L -1
x[n] =

0, otherwise
Solution — 2: = 1 —jal
i » 1—e~ iy SIn(al/ 2)
Xw)= > x[nle?™=> 4e’" =4 = 47 @D
™) J.,FZ_;{] %‘ 1-e7¢ sin(@/ 2)
The magnitude of x[n] is
| 4 | L, w = 0
X (@)= | A | S (mL;’E)‘ otherwise
sin (e /2) ]

and the phase spectrum is

ZX(@) =LA~ 4— (L-1) 451”%?
Sin
The signal x[n] magnitude and phase Is plotted on the next slide.
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Energy Density Spectrum of Aperiodic
Signals

Magnitude response
L= 1€

o S

. Phase response l
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Some Common DTFT

Sequence Discrete-Time Fourier Transform
a(n) |
3(n — ng) B e s
| 2 d(w)
e/n® 2nd(w — axy)
|
a"u(n), lal <)
| —ge™ /™
| |
—a"u(~=n-1), lal > |
| —ge /™
|
(n 4+ Da"uln), lal < | ;
(1 —ae~'#)
COS Ny i w + ay) + 1d(w — axy)
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Properties of DTFT

B A FT for Aperiodic finite energy DT signals
described possesses a number of properties
that are very useful in reducing the complexity
of frequency analysis problems in many
practical applications.

B For convenience, we adopt the notations
X[n] £ X(o)
X[n]=F {X(0)j
X(o)=F'(x[n])
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Properties of DTFT

B Symmetry:

» Real andeven x{n) — Real and BEven X{w)
» Real and odd x{n) — Imaginary and odd X{w)
» lmaginary and odd x{n) — Real and odd X{w)

» lmaginary and even x{n) — Imaginary and even X{uw)
B Linearity:
e T x[n]—t— X, ()

x.[r]e—— X, ()

a,x, [11] + a.x.[n]<«——E 5 a X, (») +a, X, (@)
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Properties of DTFT

Example — 3: Determine the DTFT of the signal x[n] = al"l
Solution — 3: First, we observe that x[»] can be expressed as: x[n]=x,[n]+ X,[n] (inearity

prop:) a'. nz0 Q. n<o
Where x[n] = and x,[n]=
0, n<0 0, n=0
Now, X (w0)= > x[n]e”’™ = Zﬂ eI =y (ﬂe-m)«
p=— =0
. . 3 . ]
=1+ae ' +lae™ [ +\lae™“ ] +....= :
e} oo m L
ol =1 -1
and, X,(w)= Z x[nle”™ =Y ae V= (gg»“ﬂ)_"
= J'ﬂ'-"'
=Y la (a e”"’] —ae’® + (ae’®) +..= L&
=1 1—ae’”
1 ae’” 1—a’
X(w)=X|(o)+ X, (w) = —+ — = .
1—ae 1— ae’ I—Zm:nsmﬂ:;{;j
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Properties of DTFT

B Time shifting:

I s x (0

» Then [n—k]<«2E 5 e X (w)

Proof: Taking FT of :-:[n—k]

F|x[n— k]]—z x[n—kle 7"

Fl=—1

Letn—k=m orn=m+k

=l

F[x[n —k]] = i mle 2 =g 17F Z x[mle ™ = e " X (w)

=00 =0

Similarly for x[n+k], F{X[n+Kk]}=elWkX(w)
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Properties of DTFT

B Time reversal:

p If Ane—X(0)

» Then [-n]«2E5 X (-o)

Froof: Letm=-n

X

Fl-n]|= > x[-nle™

H=—Xx
Fld-n]|= > x[m]e’*™ = x[m]e? " = X(-w)
=1 M=
Lecturer: WARQAA SHAHER 241
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Properties of DTFT

B Convolution: This theorem is one of the most powerful
» |f - tool. If we convolve 2 signals in time
x[n]«—— X, (@) Domain, then this is equal to multiplying
xz[ﬂ]éxz (o) Their spectra in the freq: domain.

Hn] = x[n]* x[n] <> X(0) = X, (@)X, (@)

xn]=x[n]*x,[n]= D x[klx[n—k]
Multiply both sides of this eq: by e and sum over all n, we get

S dnle i = {Z skl - k]}-*m

¥=—00 ¥=—0on| lo=—on

Interchanging the order of summation and making a substitutionn-k = m,

Y(@)= 3 x [H{ > x [m]}e‘ e = {Z x,[kJe ™" H > xg[m]e—fﬂ

=—wx m=—a k=—x m=—ao

Proof: Recall convo: formula

X (@) =X (o)X, (o)
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Properties of DTFT

Example — 4: Determine the convolution of the sequences x,[n] =Xx,[n] =[1 1 1]

Solution — 4: . | | |
X (o) =X, (@) = Y x[nle”’™ = x[n]e”™
n=—1

=00

_ @ 0 —ja | _ | J@ —j@
= [.rl[—l]e’ +x,[0]e” +x,[1]e™ ]_ [e’ +1+¢™ }
=1+2cosm®
Therefore, X(o)= X ()X, ()= [:1+2t.:u::|s-.r:a:i]2 =1+4cosmw+4cos @
4
=1+4 cnm£(1+cn52m) =3+4cosw+2coLdw
—3+20e" + 07 )+ 107
X(&)=X()X, ()= +26'" +3+ 2677 127

Hence the convolution of x,[n] and X, [nlisx[n1=[1 2 3 2 1]
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B Correlation:

Properties of DTFT

> If -
x[n]e—— X (@)

F
A AL
» Then |2

P 5 S (o) =X, (o)X, (—o)

a
<

X)X

X)X

B The Wiener- Khintchine Theorem.
» Let x(n) be a real signal, then

r (D)« }Sﬂ(m)

» That is, the DTFT of autocorrelation function is equal to its
energy density function. This is a special case.

» Autocorrelation sequence of a signal & its energy spectral
density contain the same info: about the signal.
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Properties of DTFT

Proof: The autocorrelation of x[n] is defined as

re(n]= > x[k]x[k —n]

K=-10

p=—x | k=—m

Now — Flr,[n]]= ¥ {f e[k e[k - ]]

Re-arranging the order of summations and making Substitution m= k-n,

=0

Flr )= ix[k{ Z:f[m]}e‘”"[k"’”} _ { ix[k]e"fﬂ{ ix[m]eﬂ—w}}

=00 fr=—mn M=—00

= X(@) X (-0) 5 X(&) =S, (o)
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Properties of DTFT

B Frequency shifting:
p If (X

» Then |o/“"y[n]« 2 X (0 -a,)
According to this property, multiplication of a

sequence x(n) by e"" is equivalent to a frequency
translation of the spectrum X(w) by w,

Proof: ) )
F [x[ﬁ]ef“*”] = x[nle’™e ™ =) Ank? " = X(0-0),)

R=—% H=—x
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Properties of DTFT

B Modulation theorem:
p If dn]leLf— X (o)
» Then

x[n]cosmn«=2= }%[X(m+ @,) + X(oo—a,)]

B Parseval's Theorem:
» If xnl—— X ()

[t X,(a)

» Then

)

B ]. E B3
3 x[nlx[n]«———— - I_Exl(m);f:(m)dm

H=—®
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Properties of DTFT

2

=T

~roet RH.S.= IX m]X m dm— ji{ ; [ﬁ}z }X(m)dm

— Z x,[n] S IX (w)e ' "deo = Z x [nlx,[n]=L.H.S

H=—00 H=—1X

In the special case where X4[n] = X,[n] = x[n] the Parseval's Theorem reduces

to: = )
” Y () =

H=—x

We observe that the LHS of the above equa’fmn is energy Ex of the Signal and
the R.H.S is equal to the energy density spectrum. Thus we can re-write the
above equation as:

~
i

| 1 %
E.= Y kin] == _QI S_(@)dw

H=— i _ .
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Properties of DTFT

B Multiplication of two sequences (Windowing theorem):
» If

xl[ﬂ]%}fl{mj
IJ[H]%XJ(QJ)

» Then

1 x
X EII[F‘E]IJ[H]{D—}jIIX;(&I:I:F}—.[ X (A (w— A)dA
LT E

This theorem states that: The multiplication of two time domain
sequences is equivalent to the convolution of their Fourier

transforms.
Proof: ) i o
F[xl[ﬂ]xl [ﬂ]] = le[ﬂ]xl[ﬂ]e—jwn _ Z |:E j}{(ﬂ}?"&ﬂdﬂ}fl[ﬂ]ﬁ?_jwﬂ
L

H=—00

1 [ - - - —jla—4i)n f y v v
1 jxl(,iyﬂ[ S s InJe e }: L [ (1 (- a2

-

-
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Properties of DTFT

B Differentiation in the Frequency domain:

» If x[n]tfs X (@)

» Then AX
nx[rn] < oIrr J dE:'J
Proof: -
—— X(w)= D> x[n]e
dX(ﬂJJ d =~ —iam = d — jean
— XIReEe - = X|R|l——¢€ ~
de deo L;I ] } ﬂgx L] deo
dX () - iem e -
= x[nle™ " (—jn
o ;x [72] (—Jjmn)
dX' () =
dm H;:_LI[H
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Properties of DTFT

[ ) Errearity: ax, [H]+ a,x, [l 25T 3 g X, (o) + a, X, (&)

B Time shifting: X —&l«——— & X (&)

DIFFET —
B Conjugate: x ¥ [r2] < > X F(e 7 )= X * (w)

B Time reversal: x[—n]<«—"2L > X (—a)

B Frequency shifting: e’ x[n] <« > X (o —a, )

| o . dX (@)
m Differentiation: roxc[r2]—= -

[ Convolution: x[x]=x [#x]*x,[#]«—— X (@) =X, (=)X, (=)

E Correlation: ., _ oor o () = X, ()X, (—e)

x,xr_

m VWiener khinchine: »_(I« 2% . 5 (@)

DIFT 1 = - - - -
E Multiplication: % =XalFEla[He—— (o) = EI—: A(AYF (@ —A)dA

n Parseval's Theorem: i x, [m]x;[n] +—FF— ,Il_? _1_TT X () X (e0)de
N Modulation Theorem: ™ . o
x[#] cos g, {L};[ﬁ'[&r + e, 3+ X (o — e, V]

——
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Properties of DTFT

Tutorial:

~ind the DTFT of y[n]=-a"u(-n-1), provided |a|>1
Prove correlation property of DTFT.

Prove modulation theorem of DTFT.

Prove differentiation property of DTFT.

An LTIl system is characterized by its impulse
response h[n] = (1/2)"u[n]. Determine the spectrum
and the energy density spectrum ofthe output
signal when the system is excited by the signal x[n]=
(1/4)"u[n].

oA W=

Lecturer: WARQAA SHAHER 252 Dept. of Computer and Software Engineering



Discrete Fourier Transform

BERecall the definition of DTFT: -
X(w)= Z::r:[n].sa'_""ErH > (1)

H=—00
EWhile the DTFT is useful from a theoretical point of view, its numerical evaluation
poses difficulties:

» [he summation over » Is infinite
» [he variable w Is confinuous

Ein many situations of interest, it is either not possible, or not necessary to
implement the infinite summation in (1).

» Only the signal samples of x[»] from n=0 to N-1 are available;
» The signal is known to zero outside this range; or
» The signal is penodic with perniod V.

Ein all these cases, we would like to analyze the frequency content of signal x[#]
based only on the finite set of samples x[0], x[1], ... , x[N-I].

E'We would also like a frequency domain representatiﬂn of these samples in which
the frequency variable only take a finite set of values, say w, for =0, 1, ..., N-1.

EThe Discrete Fourier Transform (DFT) fulfils these needs. It can be seen as an
approximation to the DTFT.

Lecturer: WARQAA SHAHER 253 Dept. of Computer and Software Engineering



Discrete Fourier Transform

Definition: Discrete Fourier Transform

The N-point DFT is a transformation that maps DT signal
samples {x[0]. ... x[N-1]} into a periodic sequence x[X],
defined by

x[k]= DFT{x{n]} =Y a[nle ™™, kez

r=0

Remarks:

» Only the samples x[0]. ... .x[N-1], are used in
computation.

» The N-point DFT is periodic, with period N: x[k+N]=x[x].
Thus it is sufficient to specify x[4] for =0.1, ... , N-1.

Lecturer: WARQAA SHAHER 254 Dept. of Computer and Software Engineering



Inverse DFT (IDFT)

Definition: Inverse DFT

The N-point IDFT of the samples x[0], ... x[N-1] is defined as
the periodic sequence x[k], defined by:

N-1
¥[n]=IDFT,{X[k]}= ﬁ_lfz x[kle* ™Y, keZ

r=0

Remarks:
» In general, x[n]=xn] forallne Z

» Only the samples, x[0]. ... x[N-1], are used in the
computation.

» The N-point DFT is periodic, with period N: x[n+ N] =x[k]
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IDFT Theorem

IDFET Theorem:
If XTk] i1s the N-point DFT of {x[0]. ... x[N-I]}, then

Remarks: x[ﬂ] ~ x[ﬂ]? 1= 031:----;.N —1 Dl’lly.

» Theorem states that X[#] = x{n]for »=0.1. ... . N-1 only.

» Ingeneral the values of x[»] for » < 0 and for » = N cannot be recovered from the DFT

samples XTk]. This is understandable since these sample values are not used when
computing XTk].

» However, there are two important cases when the complete signal x[»] can be
recovered from the DFT samples ATk] (7=0.1...., N-1)

+ x[m] is periodic with period M.
+ x[n] known to be zero for n < 0 and for n = V.

N-1 .
x[k]= z x[nle N
p=0)

1 N-1

b _ - 5 k Jlakn' N
x[n] NZ x[kle

p=0
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Example

Example: Prove that DFT Is periodic with period V.
Proof: we know that, DF T Is defined as:

A -Vl AT
X[ k] _ Z ¥ [ﬁ:l E'_ﬁ 2ani N
Therefore, 5 = N
X[k+N]=) x[nJe”/ "2 Z ~jk2miN ,=j2m
. n=0 n=0
Sine e7#m =1

- X[k+N] Zr[ﬂ le 7™ ¥ =xk] hence, proved.
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Example

Example: Find the DFT of x[n] =[1 0 0 1]

N-1 N i 3 . - 3 o
Solution: X[k]=)_ x[n]e A =" x[ne jk2ami 4 =S e P
n=0 =0 D)

Now, X[D]=ix[ﬂ]=x[t]]+x[]]+x[2]+x[3]=]+t]+t]+1=2
I[]]: i I[H]E—ﬁ:ﬂ'ﬂ 2 _ T[D]+D+ﬂ+ I[E]E_JSE 2

—J3x/2

—1=+1.e =1+cos(23%)—jsin(3E)=1+ j

X[E] — i I[H]E_JJ‘TH — Y[D]—I— I[E]E—Jﬁxn

r=1
=1+1.[cos( 3xn)— jsin (3an)] =0
3
X[3]=> x[nle ™% =x[0]+ x[3]e™ """  =1— ]
r=1
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Example

1
Solution: x[n]=—> X[k]e/*™*
Nz
] 1
0] = L AR =2+ Q)+ 0+ (-0 =1

1] = ZX[k g2l =_jz’[k]g*“ f =i 2+ (1+)e”  +0.27 +(1-1e” 2] =0

ZEZX[,% jete 4 _ZX[k]e”ﬂ [”-I—(l-l—z)e" +0.67 +(1-1)e*|=0

&=l
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Properties of DFT

Periodicity: N
The N-point DFT is periodic, with period v: X[+ N]=x[k]

Linearity:
If x[n#] and y[#] have N-point DF Ts X1k) and ¥(k), respectively,

ax[n]+ by[n|<«ZL s aX(k)+bY (k)
In using this property, it is important to ensure that the DFTs are the
same length. If x[#] and y[#] have different lengths, then shorter
sequence must be padded with zeros in order to make it the same
length as the longer sequence.

sSymmetry:
If x[~] Is real-valued, X{k) is conjugate symmetric,
X(k)=X*((-k) =X*((N—-Kk))y

and if x[#«] is imaginary, X(k) is conjugate anfisvmmeltric,
X(k)=—-X*((-h)=—X* (N k)
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Example

Example: A finite duration sequence of length L is
given by {1, 0<m<L-1
“ x[n] =

0, otherwise
Determine the N point DFT of this sequence for N=L.

Solution: The DTFT of the sequence was calculated as

X(W) _ Sl]'](“r]_—‘""r 2) E—jw (L)/2
sin(w/2)

The N point DFT is simply X(w) evaluated at the set of N equally
spaced frequencies w,=2nk/N, k=0,1,....N-1. Hence

X(K) = sin(kl./ N) o WK@L-D/N
sin@k/IN)
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Example

B Example: Find DFT magnitude

5 [
and phase spectra for the samples
of the signal selected in figure. af o o
Also verify that IDFT reproduces
these samples. T
B Solution: 2 o
K | Xkl |XIK]| =# radians 1+
0 |9 3 0
a
1|7+ | 72801 0.2782 l
b
2|3 ; 3.1416
o |13 |72801 | -02782 2 '1 n '1 2 2 4
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Example

S @ o
5 .
. o o bl el s o
EL
4 .
. S
1 | o1
2 ! | |
i a5k
0 | -1F
0 z 4 i E 0 z
magnitude spectnem 4.5k
25k
=T L} L} L]
o 2 n & i 10 1z
Algr=T-R=a =Tl i )]
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Example

Tutorial: o

1. Findthe DFT of x[n]=[2102] |

2. Find the IDFT of X[k]=[1+i 0 1 .| 0
1-1] s

3. Find the DFT of the 4-point i
sequence x[n]=[0123] s

4.  Find the 4 point [DFT of the | P oo
sequence [6,-2+2),-2,-2-2]]. s}

5.  Find magnitude spectrumusing +——b0—or—0 o

both DTFT and DFT for the
signal shown here.
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Fast Fourier Transform (FFT)

Recap:
B Let x[n] be a discrete-time signal defined for 0 €£n = N-1.
BThe DFT: N-1 _
X[k]=>" «n¥,", k=01...N-1 (1)
n=0
B Notes: W, =e " =cos(2r/N)+ jsin(2z / N)

» Note that the direct computation of DFT requires N* computations.
The same istrue for IDFT
The FFT only requires Nog, N calculations.

The computational saving achieved by FFT is therefore a factor of Mog,N. When N is
large this saving can be significant.

ywyy

» The following table compares the number of calculations required for different values
of N forthe DFT and FFT:
N DFT FFT
32 1024 160
1024 1048576 10240
32768 |~ 1 x10° ~05X 108
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Fast Fourier Transform (FFT)

B Whatis FFT
» FFT stands for Fast Fourier Transform
» FFT is a method of computing the Discrete Fourier Transform (DFT) that
exploits the redundancy in the general DFT equation given in (1).
» The FFT is not a new transform; it refers to a family of efficient algorithms
for computing the DFT.
» Typically, FFT requires Nlog, N while DFT requires N2

B Basic Principle
» The FFT relies on the concept of divide and conquer

» Itis obtained by breaking the DFT of size N into a cascade of smaller size
DFTs.
» To achieve this:
# Nmust be a composite number
4 The properties of W must be exploited, e g ;

wre=w" (2)
W =W (3)
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Example

Example: We can highlight the existence of redundant computations in the DFT by inspecting Eq. (1).

Using the DFT algorithm to calculate the first four components of the DFT of a signal with only 8
samples requires the following computations:

X[0]=x[0]+ x[1]+ x[2] + x[3] + x[4] + x[5]+ «[ 6] + x[7]

XT1] = x[0]+ x[1]w, " 4 x[2]7 " + x[3]7,° + x[4], " + x[S]W,° + x[6]W, ° + x[T]W;
X[2] = x[0]+ *[1 Wy " + x[21Wy  +x[31W5 *+ x[4]; " + x[S1; " + (6]~ +x[7]W;
X[3] = x[0]+ x[1]W; " Hx20Wg |+ x[3 1y~ + x[41W; ~ + x5y~ + 6] - +x[T]W;

(4)

Huweuer note that there is redundant (repeated) terms |n Eq (4). For e.g., consider 3 term in 2 line of
q. (4). -2) jx

._F
g i !
x| 2] = x[Q]e 8 = x[2]e ?
MNow, consider the computation of third term é_q the fourth Img of Eq. (4): _ _
j2x| —| i il i
x[2]w; ‘=x[2]e ‘*/=x[2]e } =x[2le e ? =—x[2]e?>
Therefore we can save one multiply Dperatmn by noting that ):[”’]H"5 = —r[”]H"J'

In fact because of the periodicity of x[k]W \.- every term in the fourth line of Eq. (4) is available from the
computed terms in the second line of the equation.
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Example

More generally, we can show that the terms in the second line of Eq. (4) are:
—jlﬂifc —j

MK =akle * =afk]e

and for the terms in fourth line of Eq. (4):

Gk —J% 3 | E_I_E P

x[k]ﬂ(yg_Ek:x[k]_J =xkle ? =kl 275,
~ofkle ¢ = kI e = () R

This exploitation of the computational redundancy is the basis of FFT which allows the
same results as the DFT to be computed, but with less computations.
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Different Types of FFT

B There are several FFT algorithms sometimes grouped via the
names Cooley- Tukey, prime factor, decimation in time,
decimation in frequency, radix-2 and so on. The bottom line
for all FFT algorithms is, however, that they remove
réadu(qc)iancy from the direct DFT computational algorithm of

g. (1).
Notable Examples of FFT Algorithms:
B NV=2"— Radix — 2 FFTs. These are the most commonly used

algorithms. Even then, there a
Radix-2 are the most important. Only in very
> Demmatlon In Tlme (DlT specialized situations will it be more
advantageous to use other radix-type FFTs.

» Decimation in Frequency (
B N=r*— Radix — » FFTs. The specialcase+= 3 and r = 4 are
We'll focus on this type only in this course j

not uncommon.

B More generally, N=p,p,p,...p, where the sare prime
numbers lead to so cuf} d mixed-radix F
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Radix-2 FFT

B We only consider radix — 2 FFTs (i.e., N =2%), where
» DFT, is decomposed into a cascade of v stages
» Each stage is made up of N/2 DFT,

Radix — 2 FFT via Decimation in Time:
B Let x[n] be a discrete-time signal defined for 0 = » = N-1, where N =2V,

B The basic idea behind decimation in time (DIT) is to partition the input
sequence x[n], of length », into two sub-sequences, i.e. x[2r] and
x[2r+1], ¥ =0, 1, ..., (W/2) — 1, corresponding to even and odd values of
time, respectwely

B The N-point DFT of x[n] can be computed by properly combining the
(N/2)-point DETs of each subsequences.

B In turn, the same principle can be applied in the computation of the
(V/2)-point DFT of each subsequence, which can be reduced to DFTs
of size N/4.

This basic principle is repeated until only 2-point DFETs are involved.

B The final result is an FFT algorithm of complexity N2log,N complex
Anultiplication and Nlog,N complex additions..
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Radix-2 FFT

B Radix-2 rearranges the DF T equation into 2 parts having

Indices as

N -1 _Jr'l;#.'_rz n = {[] :2 :4 - N - 2 }
X(k)=> x(n)e ~ n = {1.3.5... N -1}

n=0

N N

51 _j2ak(2n) 7l _ j2ak(2n+1)
X(k)=> x(2n)e ¥ +> x(2Zn+1)e N

n=10 n=1

N Jlxkn N j2xkn

5! TN _j2ak 371 TN
X(k)=> x(2n)e * +e ¥ > x(2n+1le °*

n=0 n=>0

X(k)=Gk)+W,H (k)
B This is called Decimation in time because the time
samples are rearranged In alternating groups
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Radix-2 FFT

B Radix-2 rearranges the DF T equation into 2 parts having

Indices as

v 2k n = {0,2.,4.. N — 2}
X(k)=> x(n)e ~ n = {1,3,5,.. N -1}

n=0

N N

5! _j2ak(2m) 5L _ j2ak(2a+1)
X(k)y=> x(2n)e ¥ +> x(2n+1)e v

n=10 n=0

FI

u| =

+e N

X(k)=> x(2Zn)e

n=0
X(k)=G(k)+WyiH (k) —_
This is called Decimation Iin
samples are rearranged in &
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The mathematical simplification
reveal that all DFT freq: o/ps X(Kk)

can be computed as the sum of the
o/ps of two length N/2 DFTs, of even
& odd indexed discrete time samples
respectively, where the odd-indexed
short DFT is multiplied by a so called
Twiddle factor term.
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2-Points FFT

The 2-point FFT:
B Inthe case N=2, (1) specializes to,
X[k)=Glk]+H[kWy.  k=0.1
B Since, W, =e’" =1 this can be further simplified to
X[0]=G|0]+ H[1]
X[1]=6{0]-H{1]

Main steps of DIT:

B Split the summation X in (1) into even }, ..., @nd odd } , .44 Parts as
(N/2)-point DF Ts.

B [fN/2 =2 stop; else, repeat the above steps for each of the
individual (N/2)-point DFT.
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“Butterfly” Signal Flow Graph

B |n general, the equations for FFT are awkward to write
mathematically, and therefore the algorithm is very often
represented as a “butterfly” based signal flow graph (SFG), the
butterfly being a simple SFG of the form:

/ Splitting node

/ summing node

> d

Multiplier ’\
b
\‘W,f.f

B The multiplieris a -::nmplex number and the input data, a and b, may
also be complex. One butterfly computation requires one complex
multiply and two complex additions (assuming data is complex).
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The 4-point FFT

Case N=4=22;
B Step—1:

X[k] = X101+ X[1W," + X[2W, + X[3]7.”",
= (X[0]+ X2 )+ Wi (X 1]+ X 3.

B Step — 2: Using the property W,“ =W, we can write

X[k] = (X[0]+ X[2W,F )+ Wi(x[1]+ X[3]W )
= Glk]+ W, H[k]

Glk]= DFT,{even samples}
H| k| = DFT,{odd samples}

Note that G[k] and H[k], are 2-periodic, i.e.

Glk+2]=G[k], H[k+2]=H[k]

B Step — 3: Since N/I2 = 2, we simply stop; that is, the 2-point DFTs
G[k] and H[k] cannot be further simplified via DIT.

Lecturer: WARQAA SHAHER 275 Dept. of Computer and Software Engineering



The 4-point FFT

Interpretation:

B The 4-point DFT can be computed by properly combining the 2-point DF T's
of the even and odd samples, i.e. G[k] and H[k], respectively:

X[k]=G[k|+W, H[k]. k=0,1,2,3

B Since G[k] and HIk] are 2-periodic, they only need to be computed for k=0,
: X, [k] = G[0]+ 7 H[O0]
X [k]=G[1]+ W, H[1]
X, [k]=G[2]+ W, H[2]= G[0]+ W, H[0]

)

X,[k]=G[3]+ W, H[0]=G[1]+W, H[1]
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Radix-4 FFT

B The radix-4 decimation in time algorithm rearranges of every
fourth discrete time index , = 0.4.8,.. ¥ - 2}

{1,5.9,.. N — 3}

{2,610 .. N — 4}

{3,711 .. N — 4}

[
N-1 _jhﬁn
X(k)=> x(n)e *
=10
'%i—l _j2ak(4n)
X (k)= Z x(dn)e V¥
=0

Fl

1

mn

N

LA |
4

This works out only when the FFT length is multiple of four.

j2ak(4n+l)

+Z x(4dn+1e ¥
=0

Jlak{4n+l)

- Z x(dn+2)e
n=0
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Radix-4 FFT

X(k)=DFT, [x(4n)]+ W ;DFT, [x(4n+1)]

4 4

+ W DFT, [x(4n+2)]+ W, DFT  [x(4n+3)]

B This is called Decimation in time becaise time
samples are rearranged in alternating groups
and a radix-4 algorithm because there are four
groups.
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Split Radix FFT

B By mixing radix-2 & radix-4 computations
appropriately, an algorithm of lower complexity
than other can be derived.

N1 JLEn
X(k) zz.x(ﬂ)e N
-
."'v'-_l ;.,,-'_1 ‘_1,#.-_1
2 2AQn) g PkEn) 7 DA3)

- —_——

XM= e ¥ +Y e ¥ +)a(dnsde ¥

X(k) = DFTy[x(2n)]+ Wy DF Ty [x(4n+1)]+ Wy DF Iy [x(4n +3)]

4 4
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End of Chapter
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