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Chapter 1

Define the field and its scope.

Give a brief introduction about image
processing history field.

Explain basic terminology and notations.
What will take in next chapters.
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What iIs digital Image?

+ A digital image differs from a photo in that the values are all
discrete.

+ Usually they take on only integer values.

+ A digital image can be considered as a large array of discrete
dots, each of which has a brightness associated with it. These
dots are called picture elements, or more simply pixels.

* The pixels surrounding a given pixel constitute its
neighborhood A neighborhood can be characterized by its
shape In the same way as a matrix; we can speak of a 3x3
neighborhood, or of a 5x7 neighborhood.



What is digital Image?
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Types of Digital Images

« Binary: Each pixel is just black or white. Since there are only
two possible values for each pixel (0,1), we only need one bit
per pixel.

- Grayscale: Each pixel is a shade of gray, normally from 0
(black) to 255 (white). This range means that each pixel can be
represented by eight bits, or exactly one byte. Other
greyscale ranges are used, but generally they are a power of 2.

« True Color, or RGB: Each pixel has a particular color; that color
Is described by the amount of red, green and blue in it. If each
of these components has a range 0-255, this gives a total of
256° different possible colors. Such an image is a “stack” of
three matrices; representing the red, green and blue values
for each pixel. This means that for every pixel there correspond
3 values.



Binary Images
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Gray scale Images
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Color Images
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What is Digital Image Processing?

Image is nothing but a function in two dimensions

plotted as a 2D display with expressing the value
of the function as intensity of a gray level; we can

display it as a 3D figure.

The value is called intensity.

Digital image processing refers to processing a
digital image, where X and Y have finite elements
(picture elements)or (pixels).

Images are not limit to the visible range or any
other range of the EM spectrum.

107 108 107 106 99 ......
108 109 106 108 107
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Z'==f()(,Yj. 3dview.fig

I = imread('pout.tif');

figure; imshow(I);

[y x]=size(I);

figure;

mesh(l:x, 1l:y, double..
(I{endz=1:1,; :)))



What Is processing?

Low-level processing: the input is image and the output is image. Primitive

operations, €.g., scaling, coloring.. .etc.

Mid-level processing: the input is image and the output is features, objects,
regions,...etc. For recognition and classification.

High-level processing: the input is recognized objects, regions,... and the
output is understanding making sense etc. This is the field of computer vision

image analyses,...etc.




1920’s Picture Transmission Systems

One of the first applications of digital
Images was in the newspaper industry.
Pictures were sent by submarine cable
between London and New York.
Introduction of the Bartlane cable
picture transmission system in the
early 1920s reduced the time required
to transport a picture across the A digital picture produced in 1921
Atlantic from more than a week to less from a coded tape by atelegraph
than three hours. printer with special type faces.




Blrth of Digital Image Processing (DIP)

The first computers powerful enough to do meaningful image processing
appeared in the early 1960s for the space program.

» DIP techniques began in the late 1960s and early 1970s to be used in medical
Imaging, remote Earth resources observations, and astronomy.

« The invention in the early 1970s of computerized axial tomography (CAT),
also called computerized tomography (CT) for short, is one of the most
Important events in the application of image processing in medical diagnosis.

The first picture of the moon by the U.S. spacecraft Ranger 7, July 31,1964



What Is, and how do we get, an Image?

* Images model variation in a detected level
of activities over a spatial domain of interest
as a 2-dimensional data set.

* Measured activities are either:
— Inherent in the imaged object itself
e.g. Thermal emission, and Brain activities
— result of interaction with to its environment
e.g. Light reflected on the surface of objects
— OR a combination of both
e.g. X-rays and CAT images



Types of Imaging Systems

Imaging systems depend on energy sources

Sources of energy include:

— the electromagnetic energy (EM) spectrum,
— Ultrasonic,

— acoustic, and

— electronic

Accordingly there are different types of imaging
systems and an ever growing list of applications.

Multi-spectrum imaging Is also available



The Electromagnetic Spectrum

Energy of one photon (electron volts)
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Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

The electromagnetic spectrum arranged according to energy per photon.

Gamma X-ray Optical Infrared Radio

Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum.
(Courtesy of NASA.)




1.3.1 Gamma-Ray
Imaging.

Major use In:

Nuclear medicine:
injection of radio-
active material (rather
than external source of
radiation) that decays
after transmission and
received by detector
(Fig a, b). See the
tumors in brain and
lung of Fig. b.

Astronomy: Fig. cisa
self radiating star that
exploded 15,000 ago.
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FIGURE 1.6
Examples of
gamma-ray
imaging. {(a) Bonc
scan. (b) PET
image. (c) Cygnus
Loop. (d) Gamma
radiation (bright
spot) froma

roactar valve
(Tmages courtesy
of (a) G.E.
Medical Systems,
(b) Dr. Michael
E. Casey,CTI
PET Systems.

{c) NASA.

(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)




1.3.2 X-Ray Imaging
Mainly used in medical imaging, but also used
in astronomy.

Emission 1s produced by heating a cathode and
the patient is placed between it and the detector
(which is a film). This is called analog X-ray.

The object modifies the X-Ray and, hence
modulation is detected on the film.

Digital X-ray is produced by either digitizing
the analog or directly by having the X-ray fall
on digital device (e.g., digital mammography).
See Fig. a., b.

Other X-Ray uses is CT scans, in which the
object is sliced and each slice is imaged, Fig. c.

Similar uses is for X-Ray exist in industry, e.g.,
testing circuits. Fig. d b

ce

FIGURE 1.7 Lixamples of X-ray imaging (a) Chest X-ray. (b) Aortic angiogram. {¢) 1 lead
CT (d) Circuit boards {¢) Cygnus Loop, {Images courtesy of (a) and {¢) Dr, David
R. Pickens. Dept. of Radiotogy & Radiological Sciences, Vanderdilt University Medical
Center, (b} Dr, Thomas R, Gest, Divisson of Anatomical Sciences, University of Michi-
gan Medical School, (d) Mr. Joseph E. Pascente. Lixl. Inc..and (¢) NASA.)



1.3.3 Imaging in the
Ultraviolet Band
Appear in many
applications, e.g.,
microscopy, lasers,
biological imaging,
and astronomical
observations.

Fluorescence
microscopy: when a
photon of Ultraviolet
light (not visible)
collides with
electron of
fluorescent material
it 1s elevated to
higher energy level,
and when relaxes it
emits light in the
visible region.
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FIGURE 1.8
Examples of
ultraviolet
naging.

(a) Normal corn,
{b) Smut corn.
(<) Cygnus Loop.
(Images courtesy
of (a) and

(b} Dr. Michael
\W. Davidson,
IFlorida State
University.

(c) NASA))

The material to be
examined is either self
fluorescing or, we treat
it with another
fluorescing material.
See Fig. a.; b.




1.3.4 Imaging in the Visible and
Infrared Bands

Imaging in visible band is ubiquitous;
frequently it is accompanied by
infrared imaging.

The images in the Fig. are from light
microscopes, but from different
fields.

de f

FIGURE 1.9 Examplesof light microscopy images. (a) Taxol (anticancer agent), magnified
250, (b) Cholesterol—d0x, (¢) Microprocessor—60._ (d) Nickel oxide thin film—a600
». (¢) Surface of audio CD—1750> ()} Organic superconductor—I50>. (Images cour-
tesy of Dr. Michael W. Davidson. Florida State University.)



TABLE 1.1
Thematic bands
in NASA's
LANDSAT

satcllite.

Remote Sensing: is
another area of
application for visible
band; one object is
imaged using different
bands, all in the visible
range (called thematic
bands) in NASA’s
LANDSAT satellite.

In Fig 1.10, notice the
difference between the
infrared bands (4-7)
and the first three; e.g.,
the river is so obvious
in band 4 and 5.

Band No. Name Wavelength (um)  Characteristics and Uses

1 Visible blue 0.45-0.52 Maximum water
penetration

2 Visible green 0.52-0.60 Good for measuring plant
vigor

3 Visible red 0.63-0.69 Vegetation discrimination

4 Near infrared 0.76-0.90 Biomass and shoreline
mapping

5 Middle infrared 1.55-1.75 Moisture content of soil
and vegetation

6 Thermal infrared 10.4-12.5 Soil moisture: thermal
mapping

7 Middle infrared 2.08-2.35 Mineral mapping

. Y , 5 .
FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. arca. The numbers refer to the thematic
bands in Table 1.1. (Images courtesy of NASA)

6
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Whether observation
and Prediction: another
application for
multispectral imaging
from satellites.

In the Fig., the eye of the
hurricane is obvious. The
image is taken in both the
visible and the infrared

bands.

FIGURE 1.11
Multispectral
image of
Hurricane
Andrew taken by
NOAA GEOS
(Geostationary
Environmental
Operational
Satellite) sensors.
(Courtesy of
NUAA.)



Fig 1.12 and 1.13 are
images part of “ Nighttime
Lights of the World™
dataset

This infrared imaging
system has unique
capability to observe faint
sources of visible-near
infrared emissions (this

includes cities, towns, ...).

It is very easy to calculate
electrical energy usage by
various regions in the
world using this image.

Also, the difference 1s
obvious between, e.g., US
and Africa.

FIGURE 1.12
[nfrared satellite
images of the
Americas. The
small gray map is
provided for
rolbocronos.
(Courtesy of

MO ALY




FIGURE 1.13
Infrared satellite
images of the
remaining
populated part of
the world. The
small gray map is
provided for
reference.
(Courtesy of
NOAA))



Automated visual
inspection of
manufactured goods:

Fig. a. the black square is
a missing part.

Fig. b. no missing pills

Fig. c. There is a bottle
that is not filled up.

Fig. d. unacceptable
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FIGURE 1.14
Some examples of
manufactured
goods often
checked using
digital image
processing. (a) A
circuit board
controller.

(b) Packaged pills
(<) Bottles,

(d) Bubbles in
clear-plastic
product.

{¢) Cereal.

(H Image of
intraocular
implant.

{Fig. (I) courtesy
of Mr. Pete Sites.
Perceptics
Corporation.)

plastic product because of

bubbles.

Fig. e. Some burned
flakes exist, which
degrades the quality.

Fig. f. detection of
imperfections in lens.




Fig. a. Finger
print
identification.

Fig. b. Automatic
counting of bills,
reading of serial
numbers, ...etc.

Fig. c. and d.
automatic plate
reading. The
white rectangles
are the areas
detected by the
system, and the
black rectangles

are the recognized

numbers by OCR
system.

%9128,

18126

MM PH41965
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W 3
B -
.. <o 1O
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FIGURE 1.15
Some additional
examples of
imaging in the
visual spectrum,
(a) Thumb print.
(b) Paper
currency. (c) and
{d). Automated
license plate
reading. (Figure
(a) courtesy of the
National Institute
of Standards and
Iechnology.
Figures (c) and
(d) courtesy of
Dr. Juan Herrera,
Perceptics
Corporation.)



. o FIGURE 1.16
1.3.5 lmagmg in the Spaceborne radar
. image of
Microwave Band  nountainsin
southeast Tibet,
{Courtesy of
NASA.)

Dominant application is radar. Some
radar waves penetrate clouds and
vegetation which makes it capable of
collecting data over any region any
time.

A flash camera produces microwave
pulses, then reflects from the surface of
the object to be detected and a snapshot
image is taken.

This image shows very clearly the
mountains although at these heights
there is a lot of clouds and other
atmospheric conditions that interfere
with visible light.



1.3.6 Imaging in the Radio
Band

This is the other extreme end of
the spectrum (as opposed to
Gamma Rays).

Major application is in medical
applications, e.g., Magnetic
Resonance Imaging (MRI}), and
astronomy.

The patient is placed in a strong
magnet and radio pulses are
passed through his body. Each
pulse results in another pulse

emitted by the patient tissues. The

strength and location is detected
by a computer and an image is
produced.

ab

FIGURE 1.17 MRI nnages of a huan (a) koee, and (U) spine. (Inage (a) courtesy of
Dr. Thomas R. Gest. Division of Anatomical Sciences. University of Michigan Medical
School. and (b) Dr. David R. Pickens. Department of Radiology and Radiological Sci-
ences. Vanderbilt University Medical Center.)



Gamma X-ray O ptical Infrarcd Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum.
(Courtesy of NASA.)

Many 1images i many bands tor exactly the same object; totally difterent images!!

Which one of these is the object? The question is wrong, because all of these (and other
images in other bands) are the interaction among three things:

1- the wave hitting the object.
2- the quality of the object and how it reacts with the wave.
3- the receiver quality, whether it is the human eye or a special purpose camera.

No one knows the essence of anything; we cannot prove anything in science. We just
observe indicators and understand in terms of these indicators. (More on this in Ch. 2).
We really do not know and cannot know but very little.

Even, we can use other modalities for the same object than the EM-based modality:



1.3.7 Examples in which Other imaging Modalities Are used

A. Acoustic Imaging.

FIGURE 1.19
Cross-sectional
image of a seismic
model. The arrow
points to a
hvdrocarbon {oil
and/or gas) trap.
(Courtesy of

Dr. Curtis Ober.
Sandia National
Laboratories.)

Finds applications in Geology, e.g., mineral and oil exploration
In low end of the sound spectrum (hundreds of HZ)

Image acquisition over land is performed by putting a large flat steel
sheet and vibrate it. The speed and frequency of returning depends
on the earth below the surface.

Marine image acquisition is performed by using air guns behind the
ship
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FIGURE 1.20
Examples of
ultrasound
imaging. (a) Baby.
(2) Another view
of baby.

(c) Thyroids

(d) Muscle layers
showing lesion.
(Courtesy of
Siemens Medical
Systems, Inc.,

LI trasonnd
Group.)

Acoustic images in medical applications (specially for imaging unborn babies) use
ultrasound (millions of HZ)

The idea is the same but with using a probe.

(of course other kinds of EM 1imaging is dangerous here.



B. Electron
Microscopy

Electron microscopes
work as optical ones
except that they
transmit electrons that
penetrate the specimen, : -

which absorbs and/or N <

reflects according to its a b

characteristics. FIGURE 1.21 (a) 250 < SEM image of a tungsten filament following thermal failure.

U 1l d £ (b) 2500  SEM image of damaged integrated circuit. The white fibers are oxides re-
Sually, uscd Ior sulting from thermal destruction. (Figure (a) courtesy of Mr. Michael Shaffer, Depart-

inspecting components ment of Geological Sciences, University of Oregon, Eugene; (b) courtesy of Dr.
J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.)

Kinds of Electron
MmICroscopes are
Transmission Electron
Microscopes (TEM)
and Scanning Electron
Microscopes (SEM);
read the book.



C. Fractals

FIGURE 1.22

(a) and (b) Fractal
images {¢) and
(d) Images
generated from
3.D computer
models of the
objects shown.
(Figures (a) and
(b) courtesy of
Ms Melissa

D. Binde.
Swarthmore
College. (¢) and
(d) courtesy of
NASA.)

Here, their neither
object nor wave;

it 1s synthesized
by computers!!!

This 1s generated
according to
mathematical
model (Fig. a., b.)

It can generate
beautiful shapes
and pattemns.

D. Model-based images

Also, their neither object nor wave; it is synthesized by computers!!! However, the
model here is a model for some object, e.g., skulls, organs,..etc. (Fig. c., d.)

More advanced application is virtual reality.



Security applications

Most current Mobile Phones are
equipped with digital cameras. Here we
are showing image preprocessing
procedure used for face recognition
system for PDA developed at
Buckingham University.




Digital Image Processing sydtem components

« Digital Image Processing assumes the
existence of a source of energy, a sensor
devise to detect the emitted/reflected energy,
a coding system for the range of
measurements, and a display device.

 However, a modern DIP system requires
powerful computing hardware, specialised
software, large storage systems and
communication devices.



Digital Image Processing system components

Metwork
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Image displays - :;;. Computer > Mass storage
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FIGURE 1.23

Ouipuis of these processes gencrally are images

Fundamental

steps in digital
image processing.

1.4 Fundamental Steps in
Digital Image Processing

Each module of these is either
low- or mid-level processing.

The knowledge about the
problem is necessary for
many of these modules.

Problem
domain

CHAPTER & CHAFTER? CHAFTER & CHAPFIER 9
B s %
{olowr 1mage “H"'.'l"“"lm'_i Compcasion Morph nlogical
3 g L e LY $
processing multiresolution processing
ProCessing

CHAPTER 5

Ilmage
restoration

CHAPTERS 1 & 4

Image
enhancement

CHAPTER 2

Image
Ao ul siLion

Bilateral arrows indicate
interaction between modules
is done using the knowledge
base.

KEnowledee base

CHAFTER 10

Segmentation

CHAPTER 11

Representation
& deseniphion

CHAPIER 12

{(Myect
recognition

Outputs of these processes generally are image armbutes



End of Chapter 1
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Chapter 2
Digital Image Fundamentals

. Elements of Visual Perception

_ight and the Electromagnetic Spectrum
mage Sensing and Acquisition

mage Sampling and Quantization

. Some Basic Relationships between Pixels
.Image Histograms

. Color Images

. Image File Formats




1. Elements of Visual Perception

Structure of the Human Eye

Cornea /

Ciliary muscle

Concentric layers of fibrous cells
Absorb ~8% of the visible light spectrum

Visual axis

Vitreous humor
Innermost membrane of the eye
Light from object imaged on retina

FIGURE 2.1
Simplified
diagram of a cross
section of the
human eye.

© 1992-2008 R. C. Gonzalez & R. E. Woods

Contracts & expands to control the
amount of light entering the eye

Central opening of the Iris: Pupil
(diameter: ~ 2 to 8 mm)



1. Elements of Visual Perception

Structure of the Human Eye

Distribution of discrete light receptors over the
surface of the retina

2 classes of receptors: cones and rods

* Cones: 6-7 million in each eye, mainly

located in the fovea. Highly sensitive to colour,

fine details.
“Photopic” or bright-light vision

* Rods: 75-150 million, distributed. Sensitive

to low level of illumination, not involved in
colour vision.
“Scotopic” or dim-light vision

©1992-2008 R. C. Gonzalez & R. E. Woods

,
No. of rods or cones per mm*

FIGURE 2.2
Distribution of
rods and cones in
the retina,
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1 | \\
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|
45,000 ¢ i I i Y
/' I | :
(R
| I
1 |
| : |
[
= N | “ ‘
= 2 r 2P 60° 80°

Degrees from visual axis (center of fovea)

Distribution of receptors is radially symmetric
about the fovea, except the so-called “blind spot”



1. Elements of Visual Perception

FIGURE 2.2
Distribution of
'IC':"‘\-I :Innlnll ]:.:L in
Structure of the Human Eye ods and
100,004 : : : : : Lhe relina.
I Blind spot — Cones
#a P / -= Rioxls
£ 135000 e \
i '*.
Approximation: fovea = square sensor array of e '1| .
N < S INE) « | %,
size .5 mm x 1.5 mm. f: s !
. o E / l R
Density of cones in this area: 150,000 % ol | ™
—_ =1 l,l
elements/mm? - / i
|
= i i i | | B —
> l_*lur;nber of cones in the region of highest L L T
aculty n thﬂ E:y&: """3 3?,000 elﬂmﬂnts Degrees from visual axis {center of fovea)

Just in term of raw resolving power, a CCD can have this number of elements in a receptor array no
larger than Smm x Smm.

=> basic ability of the eye to resolve detail is comparable to current electronic imaging sensors
(but...)

© 1992-2008 R. C. Gonzalez & R. E. Woods




1. Elements of Visual Perception

Image Formation in the Eye

] FIGURE 2.3
; e Graphical
e - } representation of

the eye looking at
a palm tree. Point
C is the optical

center of the lens.

[00 m

Photo camera: lens has fixed focal length. Focusing at various distances by varying
distance between lens and imaging plane (location of film or chip)

Human eye: converse. Distance lens-imaging region (retina) is fixed. Focal length
for proper focus obtained by varying the shape of the lens.

©1992-2008 R. C. Gonzalez & R. E. Woods



1. Elements of Visual Perception

Brightness Adaptation and Discrimination

Eye's ability to discriminate between different intensity levels

Range of light intensity levels to which the human visual system can adapt: on the order of 10"

“Subjective Brightness”

- § s FIGURE 2.4
Glare limit— x = Range of
suhj::clive
brightness
sensations
2 showing a
2|8 particular
.':é“ ; B, adaptation level.
£ |E
7 Range of subjective brightness the
5“"{’:‘“‘ eye can perceive when adapted to
[ _ this level B,
Scotopic __ Photopic
threshold (. L

-6 -4 -2 0 2 4
Log of intensity (mL)

©1992-2008 R. C. Gonzalez & R. E. Woods



1. Elements of Visual Perception

Poor brightness

rods

1.0

Vision carried out by

I

discrimination (large
Weber ratio) at low
levels of illumination

©1992-2008 R. C. Gonzalez & R. E. Woods

log AZ,/I

05+

0~

=05+

=10+

=13

»
»

I

[

| 1 FIGURE 2.6
Typical Weber
ratio as a function
of intensity.

Vision is the function
of cones

11

-20

-10123’4

log /

Better brightness
discrimination as
background illumination
increases



1. Elements of Visual Perception

ab

cd
FIGURE 2.9 Some
well-known

optical illusions.

I/

Optical illusions: /
The eye fills in non-existing info or ‘ ‘

wrongly perceives geometrical
properties of objects

Same length? Parallel lines?

©1992-2008 R.C. Gonzalez & R. E. Woods



2. Light and the Electromagnetic
Spectrum

Energy of one photon (electron volts)

w1 1wt 10 10t 100 1077 10727 1073 107 107 100% 1077 107 107
| | 1 : | | | z | ] | | | | | 1

Frequency (Hz)

102 10 10 10"® 107 10" 0% 10 10% 102 10" 10 10° 108 107 10t 10°
| | | | , | | | | | | | | | | | |

Wavelength (meters)

1072 107" 1079 1070 10°° 1077 10°° 10°° 107* 107 107 107! 1 10t 10t 100
| | | : 1 | | l. 1 | | | 1 | | |

& T oam B R

Gamma rays X-rays Ultraviolet

Infrared Microwaves Radio waves

Visible spectrum

0.4 x 107° 0.5 x 107° 0.6 x 107° 0.7 x 107°
Ultraviolet Violet Blue  Green Yellow Orange Red Infrared

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
but note that the visible spectrum is a rather narrow portion of the EM spectrum.

© 1992-2008 R. C. Gonzalez & R. E. Woods



2. Light and the Electromagnetic
Spectrum

red orange yellow green blue violet

700 nm 600nm 500 nm 400nm
wavelength
frequency in Hz
} : Ll T T L) T T
10? 108 108 10'0 102 10 10'6 10'8
microwaves ultraviolet gamma rays
radio, TV waves infrared X-rays

© 2006 Merriam-webster, ino.

C
c=2.998 x 108 m/s

v M in microns (um=10"m) or
nanometers (nm=10-m)

Wavelength (1) and frequency (v) related by: A=

Energy (eV): E=hv (h: Planck’s constant)

©1992-2008 R. C. Gonzalez & R. E. Woods



2. Light and the Electromagnetic
Spectrum

FIGURE 2.11 = A -
Ciraphical

representation of

one wavelength

* Light void of colour = moenochromatic (or achromatic) light

=> only attribute : intensity or gray level
* Range of measured values = gray scale

* Monochromatic images = gray-scale images

Chromatic light source: frequency + radiance, luminance, brightness

* Radiance = total amount of energy that flows from the light source (W)

* Luminance (in lumens, Im) = measure of the amount of energy an observer perceives from
a light source

* Brightness = subjective descriptor of light perception practically impossible to measure

©1992-2008 R. C. Gonzalez & R. E. Woods



3. Image Sensing and Acquisition

Transform of illumination energy into digital images:

The incoming energy is transformed into a voltage by the combination of
Input electrical power and sensor material.

Output voltage waveform = response of the sensor(s)

A digital quantity is obtained from each sensor by digitizing its response.



3. Image Sensing and Acquisition

Ex: Photodiode
Made of silicon

Output voltage waveform
proportional to light

Filter in front: increase selectivity

©1992-2008 R. C. Gonzalez & R. E. Woods

Filer

Power in

Housing

Energy

BENN

+— Sensing material

{lﬁJ'W- Voltage wavelorm oul

T C C C T sireea

b
-

FIGURE 2.12

(a) Single imaging
SCNs0r.

(b} Line sensor.
(¢) Array sensor.



3. Image Sensing and Acquisition

Image acquisition using a single sensor

Fil
e FIGURE 2.13

Combining a
/\ single sensor with

motion to
generale a 2-D

\ / image.

Arrangement for
high precision
scanning

”
WEBE BRI EER FEBRBBRIERAT BRI RRRBAIRREIEON
- - =
Linear motion
One image line out
per increment of rotation

and full linear displacement
of sensor from left to right

Lead screw

In-expensive (but slow) way to obtain
high-resolution images
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3. Image Sensing and Acquisition

« [llumination source reflected from a scene
element

» Imaging system collects the incoming energy and
focus it onto an image plane (sensor array)

Mlumination (energy)

» Response of each sensor proportional to the '71\ -
integral of the light energy projected

« Sensor output: analog signal — digitized

..................
FHLELE
..........
........................
.............................

.....
-----

Tmaging systen

/
L
N

NBI: Motion not necessary el el
NB2: Predominant arrangement for digital et e
cameras (e.g. CCD array) ST

HGURE 215 An example of the digital image acquisition process. (] Energy (“illumination” ) source. (b) An el-
ement of ascene. () Imaging system. (d) Projecton of the scene onte the image plane. (¢) Digitized image.
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3. Image Sensing and Acquisition

CCD cameras: widely used in modern applications: private consumers,
industry, astronomy...

CCD: Charge Couple Device

Charged Coupling Device Camera Circuit Board

Rectangular grid of electron-collection sites laid
over a thin silicon wafer

Image readout of the CCD one row at a time,
each row transferred in parallel to a serial
output register

proton o elecmon

© 1992-2008 R.C. Gonzalez & R. E. Woods



3. Image Sensing and Acquisition

Alternative to CCD cameras: CMOS technology
CMOS: Complementary Metal-Oxyde-Semiconductor

camera  CMOS chip : active pixel sensor made using

Circuit ~ CMOS semiconductor
Complementary Metal Oxide Semiconductor Board

. CMOS can potentially be implemented with

fewer components, use less power and provide
data faster than CCDs

CCD: more mature technology

NB: a CMOS-based camera can be
significantly smaller than a comparable CCD
camera

protoa: to electron conversion (photosite)

electron to voltage conversion (transistors)



3. Image Sensing and Acquisition

CCD vs CMOS

CCD: when exposure complete, transfers each pixel’s
charge packet sequentially to a common output
structure, which converts the charge to a voltage,
buffers it and sends it off-chip.

CMOS imager: the charge-to-voltage
conversion takes place in each pixel

From:

[ D. Litwiller, CCD vs. CMOS: Facts and Fiction,
Photonics Spectra, January 2001, Laurin Publishing
Co. Inc. ]




3. Image Sensing and Acquisition

CCD vs CMOS

» Responsivity (amount of signal the sensor delivers per unit of input optical energy): CMOS
imagers marginally superior to CCDs

» Dynamic range (ratio of a pixel s saturation level to its signal threshold): CCDs have
advantage by factor of 2 in comparable circumstances

» Uniformity (consistency of response for different pixels under identical illumination conditions):
CMOS imagers “traditionally worse”

» Shuttering (ability to start and stop exposure arbitrarily): standard feature of virtually all
consumer and industrial CCDs

[ D. Litwiller, CCD vs. CMOS: Facts and Fiction, Photonics
Spectra, January 2001, Laurin Publishing Co. Inc. ]



3. Image Sensing and Acquisition

CCD vs CMOS

* Speed: CMOS arguably has the advantage over CCDs (all camera functions can be placed
on the image sensor)

» Windowing: CMOS has ability to read out a portion of the image sensor (=> elevated
frame or line rates for small ROI™M). CCDs generally more limited

 Antiblooming (ability to gracefully drain localized overexposure without compromising the rest of
the image in the sensor): CMOS generally has natural blooming immunity, CCDs require
specific engineering

* Reliability: CMOS have advantage (all circuit functions can be placed on a single
integrated circuit chip)

[ D. Litwiller, CCD vs. CMOS: Facts and Fiction, Photonics

Spectra, January 2001, Laurin Publishing Co. Inc. ] (1)ROI=Region of Interest

Blooming effect



3.1. A Simple Image Formation Model

A Simple Image Formation Model

Images denoted by two-dimensional functions f{x,y)
Value of amplitude of fat (x,y): positive scalar quantity

Image generated by physical process: intensity values are proportional to the energy
radiated by a physical source => 0 <f{x,y) <o

f(x,y) may be characterized by 2 components:
(1) The amount of source illumination incident on the scene: illumination i(x,y)
(2) The amount of illumination reflected by the objects of the scene: reflectance r(x,y)
ftx,y) = i(x,y) r(x,y), where 0 <i(x,y) <o and 0 <r(x,y) <1
total altsorption

total reflectance
©1992-2008 R. C. Gonzalez & R. E. Woods



3.1. A Simple Image Formation Model

A Simple Image Formation Model

Example of typical ranges of illumination i(x,y) for visible light (average values):
*  Sun on a clear day: ~ 90,000 Im/m?, down to 10,000 Im/m? on a cloudy day
»  Full moon on a clear evening: ~0.1 Im/m’

»  Typical illumination level in a commercial office: ~1000 Im/m?

Typical values of reflectance r(x,y):
» (.01 for black velvet
(.65 for stainless steel

0.8 for flat white wall paint

0.9 for silver-plated metal

0.93 for snow

© 19922008 R. C. Gonzalazr & R. E. Woods



3.1. A Simple Image Formation Model

A Simple Image Formation Model

Monochrome image

Intensity /: L, . <[<L . Inpractice: L and L, r

H‘IH:I' H‘Hﬂ' ﬂ'ﬂﬂ i‘i‘!llt' Max

Typical limits for indoor values in the absence of additional illumination:
L ~10andL__= 1000

max

[Lyiw Lyae] 18 called the gray (or intensity) scale

Common practice: shift to [(), L-1], where /=0 is considered black and /=L-1 is
considered white



4. Image Sampling and Quantization

Basic Concepts in Sampling and Quantization

ab
Digitizing the coordinate values = -
Sampling 4 B Geventing
e P renerating a
digital image.
(a) Continuous
oy 5 W, image. (b) A scan
Digitizing the amplitude values = T [ N loe from A 1o B
A in the continuous
1 1 A B { age, used to
Quantization A VR -
Y concepts of
sampling and
quantization,
(¢) Sampling and
quantization,

(d) Digital
scan line,



4. Image Sampling and Quantization

Method of sampling determined by the sensor
arrangement:

» Single sensing element combined with motion:
spatial sampling based on number of individual
mechanical increments

» Sensing strip: the number of sensors in the strip

establishes the sampling limitations in one image
direction; in the other: same value taken in practice
+ Sensing array: the number of sensors in the array

establishes the limits of sampling in both directions o peos

£ 1892-2008 R. C. Gonzalez & R. E. Woods Sampling



4. Image Sampling and Quantization

nh

FIGURE 2.17 (u) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization

The quality of a digital image is determined to a large degree by the number of samples and
discrete intensity levels used in sampling and quantization.

However image content is also an important consideration in choosing these parameters

© 1992-2008 R.C. Gonzalez & R. E. Woods



4. Image Sampling and Quantization

2 Representing Digital Images

Continuous image: function of 2 continuous variables f{s,2)
— digital image by sampling and quantization
— 2D array f{x,y), M rows and N columns, (x,y) = discrete coordinates
x=0,1,2,...,M-land y=0, 1, 2..., N-1

Section of the real plane spanned by the coordinates of an image = spatial domain
x and y are called spatial variables or spatial coordinates

©1892-2008 R. C. Gonzalez & R. E. Woods



4. Image Sampling and Quantization

2 Representing Digital Images

Representation useful for gray-scale images

M u‘”v‘l bt] ‘
f. | aﬂm\nlﬂm ¢
I I i g

X Origin

a
be

FIGURE 2.18

(a) Image plotted
a5 a surface,

(b) Imnge
displayed as a
visual intensity
array.

(¢) Image shown
asa2b
numerical army
(0,.5,and |
represent black,
gray, and white,
respectively)

NB: Origin and axes
- TV + matrix -

‘ll Q000000000000

Donnoo D0an00

Dobodg DOovoo

npoon abodo 7

b 4 NG U0 F of size 600x600 here
noo 55 000 = 360,«)0 numbem.

: o Useful for algorithms
non  RE noo

0non ! 0noo

UNURINT] G000

oo Do000

Doooo00 000000

OO0~ 000D0DOO
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4. Image Sampling and Quantization

Representing Digital Images

Sampling => (x,) — fixy) =2

Z2—=R .
Quantization => (x,y) — f{x,y) =z € [0,L-1] "'
2
Z - Z 'J: | |I||II1|

|1||1w i

The digitization process requires decisions on the |l | mw

values of M, N and L (number of discrete intensity i |||»1l. "ll:!'lw]
T

levels) i (e il Il|u|, l'ﬂ'ﬂllulu [ W "

T tblfyf I F
No (theoretical) restrictions on M and N other than: —Origin —Origh
M}ﬂﬂndN}ﬂ b = ~1|||||||||:-||-|----|||||-:|||||||

agaainn 0dnoda

O 00 O oo

(LRI LU R

o000 =~ 555, oo

amn 55 oo
S "y

Due to storage and hardware, typically: L = 2*
Assume that discrete levels are equally spaces and
integers in [0,L-1] 1.
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4. Image Sampling and Quantization

Dynamic range = ratio of maximum measurable intensity to minimum detectable intensity level in
the system
Rule: upper limit determined by saturation, lower limit determined by noise

Contrast = difference in intensity between the highest and the lowest intensity levels in an image

Saturation \ ' \

FIGURE 2.19 An
image exhibiting
saturation and
noise. Saturation is
the highest value
beyond which all
intensity levels are
clipped (note how
the entire
saturated arep has
a high, constant
intensity level)
Noise in this case
appears as a grainy
texture pattern.
Noise, especially in
the darker regions
of an image (c.g..
the stem of the
rose ) masks the
lowest detectable
true intensity level,

High dynamic range => high contrast expected

Low dynamic range => dull, washed-out gray
look
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4. Image Sampling and Quantization
Decreasing spatial resolution reduces image quality proportionally -
Checkerboard pattern.

T Images extracted from DIP, 2nd Edition, Gonzalez & Woods, PH.



4. Image Sampling and Quantization

 The checkerboard effect is not visible if a lower—resolution
Image Is displayed in a proportionately small window.




4. Image Sampling and Quantization

123 [ 162 | 200 | 147 | 93 61 1 80 | 100 | 72 | 48
137 [ 157 | 165 | 232 | 189 . - . 68 | 78 | 82 | 116 | 94
Image f=| 151 | 1556 | 1562 | 141 | 130 f(i,])<— Int(f(i,})/2) 75 | 77 | 76 | 70 | &5
205 [ 101 | 100 | 193 [ 115 > 102 | 50 | 50 | 96 | 57
250 | 50 | 75 | 88 | 100 125 | 25 | 37 | 43 | 50
8 bits 7 bits
30 | 40 | 50 | 36 | 23 15 [ 20 | 25 | 18 | 11 7 | 10 | 12 9 5
34 | 39| 41 | 58 | 47 17 | 19 | 20 | 29 | 23 8 9 |10 | 14 | 11
37 | 38| 38 | 35 | 32 18 [ 19 | 19 | 17 | 16 9 9 9 8 8
51 | 25 | 25 | 48 | 28 25 | 12 | 12 | 24 | 14 12 | 6 6 | 12 | 7
62 | 12 | 18 | 21 | 25 31 6 9 10 | 12 15 | 3 4 5 6
6 bits 5 bits 4 bits
3 5 5 4 2 1 2 3 2 1 0 1 1 1 0
4 4 5 7 5 2 2 2 3 2 1 1 1 1 1
4 4 4 4 4 2 2 2 2 2 1 1 1 1 1
& 3 3 B 3 3 1 1 3 1 1 0 0 1 0
7 1 2 2 3 3 0 1 1 1 1 0 0 0 0
3 bits 2 bits 1 bits

Original image fis reasonably bright, but gradually the pixels get
darker as the Grey-level resolution decreases.



2 bits 1 bit 0 bits !



4. Image Sampling and Quantization

Number b of bits required to store an image:
B=MxNxk
M=N=>b=N"k

Image with 2* intensity levels => “k-bit image” (ex: 256 — 8-bit image)

TABLE 2.1
Number of storage bils foe various values of N and &

Nk k=2 2l=4 3il=8 4il=16 S =3 6 =6 T =128 Kil = 25)

n 1024 28 m 409 510 B, 144 7,168 &l02
it 41095 LA 12,288 16,584 2480 M58 2RI 32 Te8
128 16384 32 Tes 44,152 5,516 #1820 K | 14, h88 |31 472
256 5,536 131,072 196,608 26214 327680 93216 458,752 324,288
512 262144 54288 TERAXD  LDMESTe 1310720 LSTIAM | A35008 2067152

104 1ME5TR 1T 152 3045728 4,194 304 5,042 80 B.201 456 T 3400032 K188 A0
Jidg 4104504 BmAE (2582012 16T 26 NATLAN M6SAM  Medan s 31554430
4096 1677126 335432 SIG3LME GLI0SEA  HRERGIE0 100663296 117490512 134217728
S92 ATIOEAAd 134217728 M1326507 268435456 335544520 400653084 460T610dE 536870912

L = Number of intensity levels
©1992-2008 R. C. Gonzalez & R. E. Woods



4. Image Sampling and Quantization

3 Spatial and Intensity Resolution

Intuitively, spatial resolution = measure of the smallest discernible detail in an image
Quantitatively (most common measures): line pairs per unit distance or dots (pixels) per umt
distance (printing and publishing industry). In the US: dots per inch (dp1)

e.g. newspapers: 75 dp1, magazines: 133 dpi, glossy brochures: 175 dpi, DIP book: 2400 dpi

Key point: to be meaningful, measures of spatial resolution must be stated w.r.t. spatial units

Intensity resolution = smallest discernible change 1n intensity level
Most common: 8bit. 16bit when needed. 32 bits rare. Exceptions: 10 or 12 bits



4. Image Sampling and Quantization

Effects of Sampling

Original image: 3692 x 2812 pixels
72 dpi image: 213 x 162 array
Smaller images zoomed back to the original size

FIGURE 2.20 ‘Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi. (b) 300 dpi, (¢} 150 dpt, and (d) 72 dpi. The thin black borders were added for
clanty. They are not part of the data

©1992-2008 R. C. Gonzalez & R. E. Woods



4. Image Sampling and Quantization

Aliasing Effect

Example in 1 dimension

| .-"

Vo
\ /

2 2007 Scientific Volume Imaging b.v.




4. Image Sampling and Quantization

Original image: 200x200 pixels

Sampled image:
100x100 pixels




4. Image Sampling and Quantization

Aliasing Effect

205x250 pixels
Original image: 622x756 pixels

“Moiré pattern™



4. Image Sampling and Quantization

Effects of Quantization

ab
cd

FIGURE 2.21

(2) 452 x 314,
234-level image
(Dl=d) Image
displaved in 128,
64, and 32 gray
leveds, while
Keeping the
spatinl resolution
constant

false contouring
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4. Image Sampling and Quantization

Effects of Quantization

el
¢h

FIGURE 2.21
(Continwed)
(o)1) Image
displaved in 16,8,
4. and 2 gray
levels {Origmal
courtesy of

Dr. David

R Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medsesl Center.)
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5. Some Basic Relationships Between Pixels

5 Some Basic Relationships between Pixels
Given an image f{x,y) and pixels p or q
2.5.1 Neighbours of a pixel

* A pixel p at (x,y) has 4 horizontal and vertical neighbours, whose coordinates are:
(x+1y), (x-1y), (xy+1), (xy-1) — set N,(p) (4-neighbours of p)
NB: each is a unit distance from p, and some of these locations lie outside the image (borders)

* The 4 diagonal neighbours of p have coordinates:
(x+1y+l), (x+1y-1), (x-1,y+1), (x-1,y-1) — setNy(p)

* N,(p) UNy(p) = Ny(p) : the set of 8-neighbours of p

©1992-2008 R.C. Gonzalez & R. E. Woods



5. Some Basic Relationships Between
Pixels

Adjacency, Connectivity, Regions and Boundaries

Let V be a set of intensity values used to define adjacency

4-adjacency: p and q with values in V are 4-adjacent if ¢ € Ny(p)
8-adjacency: p and q with values in V are 8-adjacent if q € Ng(p)
m-adjacency (mixed adjacency): p and q with values in V are m-adjacent if

q S N:i{p}:- or
q € Np(p) and N,(p) N N,(q) has no pixel with values from V

8-adjacency m-adjacency
11 || | ||
1 I 1
! 11 0
1 1 1 '
1 0 1}R 1 1 1
S BN 11 1
R <151 1
1 1 1R L 11 ]
abec 111 : [
def

FIGURE 2.25 (a) An arangement of pixels, (b Pixels that are S-adjacent (adjacency is
shiown by dashed lines; note the .1rr|h|g1||1r| (¢} m-adjacency, (d) Twao regions that arg
adjacent if B-adjecency is used. (¢) The circled point & part of the boundary of the
l-valued prxels only if B-adjacency between the repion and background s wsed. (F) The
mner boundary of the Tovalued region does not form o closed path, bui s owler

019822008 R. C. Gonzalez & R. E. Woods houndary does



5. Some Basic Relationships Between
Pixels

(Digital) path (or curve) from p (x,y) to q (s,): sequence of distinct pixels with coordinates:

(xXpVo) (X1 Vi) (X,,): where (x,y,) = (x)), (x.y,) = (51) and
forifrom 1 ton, (x, v;) and (x;,, v, ) are adjacent.

n = length of the path
(xsyy) = (x.y,) == closed path

4- 8-, or m-paths depending on the type of adjacency specified (cf figure)

Let S be a subset of pixels in an image

* P and q are connected in § if path exists between
them consisting of pixels in S only

* Forany p in S, set of pixels connected to it in S :
connected component of S.

* If only one: S is a connected set

* R 1s a region of the image if R 1s a connected set
* Riand Rj adjacent 1f Ri U Rj = connected set

» Regions not adjacent are disjoint

©1092-2008 R. C. Gonzalez & R. E. Woods

8-pﬂth I'[]-]]ﬂth

abe
def

FIGURE 2.25 () An arrangement of pixels, (k) Pivels that are S-adjacent (adjacency is
shown by dashed lines: note the .1rnh|g1||11'| () m-adjacency, (d) Two TN that are
adjacent if S-adjecency is wsed. (@) The circled point i part of the boundary of the
L-valued prsels only if S-adjacency between the repion and hackground s wed. (1) The
inner boundary of the Tovalued region does not form a closed path, bl s ouier
houndary does



5. Some Basic Relationships Between
Pixels

Distance Measures

For pixels p, g and r, with coord (x,y), (s.1) and (vw) resp., D is a distance function or metric if:
D(p,q) 20 (D(p,q) =0 iff p = q)
D =D
(pl Q) (q! p) Manhattan distance
D(p,z) < D(p,q)+Dl(q, z ,
(p,2) < D(p,q) + D(q, 2) EEBEEY

Euclidian distance between p and q: HERERRERZE
De(p,q) = V/(z —8)* + (y — )2 EEERZEN

ERZEENE

D4 distance (city-block distance, or Manhattan distance):

D4(p,q) = |z — 5| + |y — 1|

hitp: fen wikipedia.orgfwiki/Taxicab_geometry
D8 distance (chessboard distance, or Tchebychev distance):

Ds(p,q) = maz(|z — s|, [y — t)

© 18922008 R. C. Gonzalaez & R. E. Woods



6. Image Histogram

The distribution of gray levels in an image convey some
useful information on the image content.

For any image f of size mxn and Gray Level resolution k,
the histogram of h is a discrete function defined on the set
{0, 1, ..., 2k-1} of gray values such that h(i) is th number of
pixels in the image f which have the gray value I.

It is customary to “normalise” a histogram by dividing h(i)
by the total number of pixels in the image, i.e. use the
probabillity distribution:

o(i) = h(i)/mn.

Hstograms are used in numerous processing operations.



6. Histograms - Examples




6. Local Vs. Global Histograms — Image Features

v

.'
, L

-
ﬁ:

Histograms for parts of an image provide useful
tools for feature analysis.

Local Histograms provide more information on
Image content than the global histogram.



/. Color Images
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/. Color Images

» Light reflected on an object and detected by a sensor is
an additive (linear) combination of different wavelengths
(i.e. Colours).

» Red, Green, and Blue are the primary colors. Other
colors are a linear combination of R, G and B. i.e light
color space is 3 dimentional with {R, G, B} as its base
and every other colour can be expressed as:

a*R +b*G + d*B,
where 0<a,b,c <1 and at+b+c=1.

» RGB perfectly interpret of human vision



8. Image files Format

Image files consists of two parts:

> A header found at the start of the file and consisting
of parameters regarding:

v" Number of rows (height)

v" Number of columns (width)

v Number of bands (i.e. colors)
v Number of bits per pixel (bpp)
v File type

> Image data which lists all pixel values (vectors) on
the first row, followed by 2nd row, and so on.



» Common image file formats are:
v BIN, RAW

PPM,PBM,PGM

BMP

JPEG

TIFF

GIF

RAS

SGl

PNG

PICT, FPX

EPS

VIP

LN N N X X X X X X X



End of Chapter 2
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Imtensity Transformations
and Spatial Filtering

Key Features of Chapter 3:

 Image Enhancement.

 Basic Gray Level Transformations.
 Histogram Processing.

« Smoothing Spatial Filters.

« Sharping Spatial Filters.

« Combining Different Spatial enhancement
Techniques.



Introduction

Image Applications require a variety of techniques that can be divided
Into two main categories:

> Image Processing, and

> Image Analysis
Image processing techniques include:

> Image Enhancement

> Image Restoration

» Image Compression (for storage or transmission)
Image Analysis tasks include:

> Feature Detection and Recognition

> Image Classification

> Image Indexing

Image analysis do rely on Image pre-processing steps.



Image Enhancement - Examples

Poor contrast image

Blurred image

Sharpened image



Image Restoration - Examples

Restored image



Image Enhancement — Aims & Objectives

v Image enhancement aims to process an image so that
the output image is more suitable than the original.

v' Suitability is a application specific and enhancement is
often a trial & error process.

v It either helps solve some computer imaging problems,
or iIs used as an end in itself to improve image quality.

v' Enhancement methods are either used as a
preprocessing step to other imaging tasks, or as post-
processing to create a more visually desirable image.

v' Enhancement includes improving contrast, sharpening,
highlighting, or smoothing some features for display
and/or for further analysis.



Image Enhancement in the spatial domain

» Success of enhancement may be evaluated subjectively
by viewers or automatically according to defined criterion.

» Image enhancement methods are classified as:

» Enhancement in the Spatial Domain — using image
transforms that manipulate the image by changing its pixel
values or move them around.

» Enhancement in the Frequency domain using image
operators that manipulate the frequency information in the

subbands which in turn have noticeable spatial effects.

» In this chapter, we are concerned with Spatial domain
based enhancement.



Dynamic Range,Contrast and Brightness concepts
v' The dynamic range of an image is the exact subset of grey values
{0,1,...,L-1} that are present in the image. (In most cases L=255).
v" Image histogram can be used to determine its dynamic range

v" When the dynamic range contains significant proportion of the grey
scale, then the image is said to have a high dynamic range and the
image will have a good contrast.

v' Low—contrast images can result from
v’ poor illumination
v' Lack of dynamic range in the imaging sensor
v Wrong setting of lens aperture at the image capturing stage.

v" The most common enhancing procedures to deal with these
problems are Gray Level transform



Examples

lalslss ™
b — Channel: Gray
3
4
i Poor
oy contrast
i —
] ' ’ Mean: 197.13 Level:
» . | StdDev: 2556 Count:
: ‘ ' | Median: 200 Percentile:
> ' Pixels: 56643 Cache Level: 1
| Histogram
— Chanmel: Gray
S
Reasonable
Mean: 158.03 Level: b
Std Dev: 47.77 Count: ut not
Median: 153 Percentile: perfect
Pixels: 76002 Cache Lewvel: 1 contrast




Image Histogram & Image contrast

Histograms also hold information about image contrast.

In low contrast images,
histogram components
are crammed in a
narrow central part of
the gray scale.

High-vontrast image

[Low-contrast image

In high contrast images,
the histogram occupy
the entire gray scale
(i.e. has high dynamic
range) in a near uniform
distribution.



Image Histogram & Image brightness

Image histogram holds information on brightness level

Dark image

In bright images,
histogram

components are
biased toward the
high (bright) side
of the gray scale.

In dark images,
histogram
components are
concentrated on
the low (dark) side
of the gray scale.

Bright image




MATLAB Implementation of Spatial domain transforms

* In MATLAB Grey level transforms can be
Implemented by a double nested loop using the
transform formula.

 Filtering in the spatial domain can also be
Implemented by (triple) nested loops but one
has to append the image on the boundaries of
the image using some agreed scheme (by
adding zeros, duplicating boundaries).

« MATLAB provides special functions for the most
commonly used filters.



Image Operators in the Spatial domain

An image operator in the spatial domain T applied on an image
f(x,y) defines an output image:

a(xy) = T(i(x,y))

which is defined in terms of the pixel values in a neighbourhood
centred at (Xx,y).

Most commonly used neighbourhoods are squares or rectangles.

The simplest form of T is when the neighbourhood consists of the
pixel itself alone, i.e it depends on f(x,y) alone.

In this case, T is a Gray Level transform which maps the set
{0,1,...,L-1} of grey levels into itself, i.e. is a function:

T:{0,1,....L-1} — {0,1, ..., L-1}.

Larger size neighbourhood-based operators are referred to as
mask processing or filtering.



Simple Gray Level transforms

The most common type of grey level transforms are linear
or piecewise (not necessarily continuous) linear functions

The Image Negative transform
an image with gray level in the
range {0,1,...,L-1} using the
negative map:

Theg () =L-1-1.
e.g. if L =28 = 256 then
Tneg(i) =255 —1.

255

204

Negative Image Transform

153

102

51

51

102

153

204

255




File Edil Tex Cel Tool Debuw Desklo ‘Windo Help | A

Negative transform in MATLAB

N B BR - «[6 7] >0
1- clear all

& — c=inread|'Artificial. bmp');

4 — figure; imshowi(c):

3 - [tn n]=size(c);

5 - for i=1:1:m

B - for jJ=1:1:n

i £f(i,31=255-c(1i,]3):

g - end

9 - end

10 = figure; imshow(f):;

11 -  dimwwrite(f,'Artificisl-neg.bmp')’ ’ﬁ :

Artificial.omp

Artificial-neg.bmp



Example — Negative of an image

Original digital mammogram. Negative image



Piecewise Linear Gray Level transforms

¢ FOI‘ any O < t < 255 the Thresholding Transforms
threshold transform Thr,
Is defined for each i by:

153

f

0 If i<t 102

Thrt (I) = 9 | | .
| otherwise

\

0 51 102 153 204 259




The Threshold Transform in MATLAB

In MATLAB, Grey level transforms can be implemented by nested loop.

I & B - .
el Editor - C:\MATLABT vwork'linear.m’™ - | O] =|
, File Edit Text Cell Tools Debug Deskkop Window Help ™ | A I
D HE| & BE@R o (&G (s -] 0O
[
I 1 — clear =@l1l:; |
I a2 — c=imread|'margret Jlomp ') o i
3 — immshonw (o) 2
q — for i=1:1::=299
5 — for j3J=1:1:401
5 — if (i, ) <8P
v (i, J1l=0;
o =1l
a9 — ernd
10 — =rdd
11 — irmshonw (o) 2
12 — irmwrite (o, 'Threzholdedmargret . brp' )
4| | > |
| script Ln & Col 20 |OWE




A Piecewise Linear Gray Level transform

255
240
225
210
195
180
165
150
135
120
105
90
75
60
45
30

Peicewise_linear

15
o ¥

0 15 30 45 60 75 90 105120 135 150 165 180 195 210 225 240 255

This chart represents the
transform T which iIs
defined for each i by:

F2% Ifi <110
T@)=] i If 110 <i <200
255 If i >200.




The above Piecewise Transform in MATLAB

& Editor - C:\MATLABT \work' linear.m™ - |I:I|£| f
I File Edit Text Cell Tools Debug Deskitop ‘Window Help | L
D H|fBEBR & (de. -] 70O~
hl 1 — clear all:;
s = c=imread ([ 'margret . lomp ')
a3 - imshow () ;
| 4 - for i=1:1:z299
o = for J=1:1:401
B — if oci{i,J1<101
Fll cli,J)l=a*c(1,]):;
8 — elzeif c(i,])1=>200
= (i, jJ1=255:;
10 — etcd
11 — 1l
12 — erd
15 — im=zhow (o) !
14 — imwrite (o, 'PeicewiseTmargret . lmp')
1] | 1
| script Ln 14  Col 23 |OWE g




Special Grey Level transforms

Grey level Stretching aims
to increase the dynamic
range of an image. It
transforms the grey levels in
the range {0,1,...,L-1} by a
piecewise linear function.

Gray level Slicing aims to
highlight a specific range
[A...B] of Grey levels. It
simply maps all Grey values
in the chosen range to a
constant. Other values are
either mapped to another
constant or left unchanged

L —1 I I T
(F2. 52}
= 3L M4 —
3
é*
= 2L T _
g L2 (r)
S Lpal _
(r1.51)
0 | | |
8] L/4 Lj2 L4 L —1
Input gray level.r
— T(r) | |
L L ! | i | I :r
0 A B L-1 0 A B



Driginal image

T@) =+

(2271 —5040)/ 47

\

Gray level stretching - Example

255 —

128 —

E[I{r,c)]
Modified
wvalues

stretch
sloperl

1]

| I I
0 =4 TS 255

I{r.cy- Original gray lewvels

Image after modification

If 28<1<75
otherwise.



Grey-level stretching

255 —

stretch
sloperl

128 —

E[Iir,c)]

Modified
values
a | | |
| I I
0 25 75 Z55
Original image I(r,c)- Original gray lewels Image after modification
J_- _ Lol .l _al bl bl o)., ] N | O | P ) O I T " |
I I

Histogram Before Histogram After



Gray-level Stretching with Clipping at Both Ends

255

This operator is implemented by the function:

(0 if i <80
o)) S(i) =X 255(i - 80)/100 if 80 <i <180
_ 255 if i > 180

| |
80 180 255

Ifr,c) — Original Gray Level Values

Original image Modified image with stretched gray levels



Gray-level Stretching with Clipping at Both Ends

X 255
-
S
) N oY
\ ¥
N
| 2
E £ -
| ¥ (9 i E{I{rc)]
, '\ %3 Modified
\ ;“r _ Gray Level
| Values
T
Original image
[
Mean: 19692 Level:
Std Dey: 2562 aunt:
Median: 200 Fercentile:
Fixels: 52031 ache Level: 1

Histogram Before

80 180

Ifr,c) — Onginal Gray Level Values

Image after gray levels stretch

T e

Median: 152

Mean: 149.41 Level:
Std Dey: 47 68 Count:
Percentile:

Cache Level: 1

Fixels: 37540

Histogram after



Gray Level Slicing - Examples

Original image

Z585 —T—

255

[ | [
150 EZ00 Z55

|
150 Z00 EZ55

Image sliced to emphasize
gray walues from 150 to 200;
background changed to hlack.



Non-linear Basic Gray Level transforms

The Log transform is based on a
function of the form:

Log. (i) ==c Log(1+1)

for a constant c.

Depending the value of c, this
function darken the pixels in a
non-uniform way.

The Gamma transform is based
on a function of the form:

Gamma ,, () =c "

for constants c and y.

The effect of this transform
depends on the value of c and y.

Log(1+i)

10 -
9 .
8 .
7 .
6 .
5 .
4 .
3 .
2 .
1
-20 35 90 145 200 255
Gamm(i,0.7)
60 -
50 -
40 ~
30 1
20 -
10 -
-45 5 55 105 155 205 255

These transforms effect different images in different ways.




The Effect of different Gamma transforms

Original MRl image Gamma transform, c =1, y =0.6 Gamma transform, c =1,y =0.4

This example indicates that different y values have different effect



Another Example

. Gamma
Orlg_lnal transform,
Aerial ¢ =1,7=3.0
image

Gamma

transform, Gamma

c=1, y=4.0 transform,
c=1, y=5.0

This example also link between effects and y values. But the 2 examples,
show that the characteristics of the input image results in different effects.



Gamma Transform - Example

Gamma
Transform,
c=1,y=4.0

Original Aerial image Transformed image

[ |
Miean: 19533 Level: Mean: 114 .48 Level:
Std Dev: 26.23 Count: Std Dew: 5277 Count:
Median: 202 Percentile: Median: 117 Percentile:
Fixels: 81510 Cache Level: 1

Fixels: 817346 Cache Level: 1



Histogram-based Gray Level Transforms

v Image histograms provide statistical information that
are useful for many image processing tasks such as
enhancement, compression and segmentation.

Any gray-level transform, including the ones discussed
In the last chapter, changes the input image histogram
In way that depended on the transform parameter(s).

Question:

Is It possible to design gray-level transforms that
manipulate image histograms in specified ways?

v' Filtering (i.e. image operators that change a pixel value
In terms of a subset of a neighboring pixels) can also
be used to enhance images.



Enhancement through Histogram Manipulation

« Histogram manipulation aims to determine a gray-level
transform that produces an enhanced image that have a
histogram with desired properties.

« The form of these gray-level transforms depend on the nature
of the histogram of the input image and desired histogram.

« Desired properties include having a near uniformly distributed
histograms or having a histogram that nearly match that of a
reference (i.e. template) image.

« For simplicity, we normalize the gray levels r sothat 0 <r <1
rather than being in the set {0,1, ..., L-1}.

The gray level transforms are assumed to be based on an onto
monotonically increasing continuous functions:

T:[0,1] = [0,1]: r 1> s =T(r).

These conditions on T ensures that T has an inverse function.



Histogram Equalisation

 Due to the randomness of light sources and sensor
position among other factors we assume that gray
levels in an Image is a random variable with probability
density function (pdf) at gray level r being the expected
proportion of pixels that have r gray value.

s=T(r)= j'or p(w)dw.

« This works for continuous pdf’s, and for a discrete set
{0,1,...,L-1} of gray levels it translates to:

s=T(r) =Zr: Frel\c|:|(i).

Where Freq(i) is the number of pixels in the image that have
Gray value |, and N is the image size



Pseudo Code for Histogram Equalisation

Step 1.
Step 2.

Step 3:

Step 4.
Step 5:

Scan the image to calculate the Freq [0..L-1], i.e. histogram

From the Freq [ ] array compute the cumulative frequency
array Cum_freq [O...L-1]:

{ Cum-freq[0] =Freq[O];
fori=1to L-1
Cum_freq[i] =Cum_freq[i-1]+Freq]i];
}

Determine the HE transformation lookup table:
fori=1to L-1
{ ]=round(Cum_freq[i]*(L-1)/N);
] =),
inv_T[j] =1,
}

Transform the image using the lookup table T.

Open a file “Inv_HE” and write inv_T entries into it.



Histogram Equalisation in MATLAB

& Editor - C:\MATLAB 7 work' HistEqual.nm™® - O] =|
File Edit Text oCell Tools Debug Deskiop  WWindow Help ™ | S
D | 2=l o | & éfF | 88 |(Bale - >0
1 - clear =all:
2 | = c=imread(' Chri=s.lomp') »
3 - g=zero=s(1,256)1; % creating an array of zeroz of =ize 256
q — Co=og ZCunmmillative frequency array
5 - [tn n] =si=ze () ;
& — for i=1:1:m X Thi= loop
v o= for jJ=1:1:n L creates the
S - gicl(i, 1 +1)1=gici(i,J1+11+1; % histograsun for o
= ehndd ¥ which i=s the
10 — =1l L freguency dist.
11 - co(1)=g(l1l]
1= — for i=2:1:256
13 — for jJ=1:1:1
14 — coglil=cg(il+gii): %z Calculating the
15 — =end Z cummalatiwve freg of o.
le — =ricd
17 — E=m*n:
15 — for i=1:1:m
19 — for jJj=1:1:n
20 = cl(i,J)l=255%cgici(i,Ji1+1) K; % HE operator.
=21 — erdd
=2 — =1icd
=23 = irwm=show () !
=3 — imwrite (o, 'HEChri=.bmp']
4] | 3




Example 1

"B Chris.bmp @ 100% (RGB/&)
iy 5 : Mavigator | Info | Histogram

Channeal: |FLGEF | y

« Histogram is

nearer to
Source) |Entire Image = -
Mean; 160,32 Lewel: un |f0rm than
Std Dew: 46,48 Count: Or|g|na|
Median: 155 Percentila:
Pixels; G2260 Zache Lewel: 1 . I m p I’Oved
m_ : Contrast but
Mawigator Info Y Histogram
Chanrel: |RGE =1 % some addEd
Nnolse.

Source; |Entire Image =1
Mean: 12857 Lewel:

Std Dew: 73,29 Count:

Median: 130 Percentile:

Fixels: S82e0 Cache Lewel: 1




Histograms Equalisation — Example 2

I Mavigator 1 Info 1 Hiitugraml‘l*]

I Mawigator '1 Info 1 Hiitngram‘ﬂ

it

Gray levels in the output image are not very uniformly distributed.




Example 3

%} [ Mavigator 7 Info Hiitngram‘ﬂ

.

O r I g I n al i_“h:m_»_;_"_ 2820 _4 _‘

I Mawigator 1 Inﬁ:nw Hiitngram‘ﬂ

Histogram
Equalised
Image

I




Example 4

P~

[

MMean:; 152 .63 Level: Mean: 128 d6 Level:
SdDeyv: 4955 ot Std Dew: 74.09 Count;
NMedian: 146 Fercent|le; Median: 128 Percentile:

Fixelk: 76800 Cache Lewel: 1 Pixels: 76480 Cache Level: 1




Original

After HE

operation

Example 5

— Channel:

Lurninosity |

B
Mean: 9943 Level:
Std Dev: 4191 Count:
Median: 106 Percentile:
Pixels: 76241 Cache Level: 1
~ Channel: | Luminosity |

|||Wmm|||||I\Il||||IllH|||||||||||||||I|||||||m||n

Mean: 129.23 Level:
Std Dey: 72.70 Count:
Median: 128 Percentile:

Pixels: 76002 Cache Level: 1




Example 6

[

Mean: 210,72 Level:
Std Dey: &1.01 Count:
Median: 248 Fercentile:

Fixels: 76800 Cache Level: 1

L

Mean: 151.41 Level:
Std Dey: 95.48 Count:
Median: 128 Fercentile:

Fixels: #&200 _ache Level: 1



Example 7

N
Mean: Z211.04 Level:
S5td Dey: 6d.76 _ount:
MMedian: 249 Percentile:
Fixels: 7&300 iZache Level: 1
MlIIIHHHHHHM |
[
Mean: 143.03 Level:
Sid Dey: 9363 Court:
Median: 131 Fercentile:

Fixels: 76430 _ache Level: 1




Remarks on HE effects

Histogram Equalisation does improve contrast in
some cases, but it may introduce noise and other
undesired effect.

Image regions that are dark and not clearly visible
become clearer but this may happen at the expense
of other regions.

These wundesired effect is a consequence of
digitization. When digitise the continuous
operations rounding leads to approximations.

Images for which different regions exhibit different
brightness level, may benefit from applying HE on
sub-blocks of the images.



Histogram Matching

The previous examples show that the effect of HE
differs from one image to another depending on
global and local variation in the brightness and in the
dynamic range.

Applying HE in blocks may introduce boundary
problems, depending on the block size.

Histogram Matching IS another  histogram
manipulation process which is useful in normalizing
light variation in classification problems such as
recognition.

HM aims to transform an image so that its histogram
nearly matches that of another given image.

HM is the sequential application of a HE transform of
the input image followed by the inverse of a HE
transform of the given image.



Pseudo Code for Histogram Matching

Step 1: Open the “Inv_HE” a file and read its entries into inv_TO0.

This file should have been created by the HE++ algorithm
for a good template image.

Step 2. Scan the input image | to calculate the Freq[O..L-1].

Step 3: From the Freq[] array compute the cumulative
frequency array Cum_freq[O...L-1]:

{ Cum-freq[0] =Freq[O];
fori=1to L-1
Cum_freq[i] =Cum_freq[i-1]+Freq[i];}
Step 4: Determine the HM transformation lookup table:
fori=1to L-1
] =round(Cum_freq[i]*(L-1)/N);
HM_TI[i] =Inv_TO[j];
Step 5: Transform the image using the lookup table HM_T.



Spatial filters classification

« Spatial filters can be classified by effect:

— Smoothing Filters: Aim to remove some small isolated
detailed pixels by some form of averaging of the pixels
In the masked neighborhood. These are also called
lowpass filters.

Examples include Weighted Average, Gaussian, and
order statistics filters.

— Sharpening Filters: aiming at highlighting some
features such as edges or boundaries of image objects.

Examples include the Laplacian , and Gradient filters.

« Spatial filters are also classified in terms of mask
size (e.g. 3x3, 5x5, or 7x7).



Filtering in the spatial domain

Filtering In the spatial domain refers to Image
operators that transform the gray value at any pixel
(x,y) in terms of the pixel values Iin a square
neighbourhood centred at (x,y) using a fixed integer
matrix of the same size.

The integer matrix is called a filter, mask, kernel or a
window. The operation is mainly the inner product
(also known as the convolution) of the pixel
neighbourhood subimage with the filter.

The filtering process works by replacing each pixel
value with the result of convolution at the pixel.

Filtering is often used to remove noise in images that
could occur as a result of less than perfect imaging
devices, signal interference, or even as a result of
Image processing such as HE transforms.



Spatial Filters - illustration

Image fix, ¥) '~.\

Pizcls of imags
=aclion under mask

=V

a—1, -1 o —1.0 wl—l. 1

wl =1 STHLINY] ar'il |

wil.—1 a1, 0 a1, 1

Mlask coafficion s, shinving

x—-Ly-1 Ml — L3 fle—1y+1 coordinate arrangement
Mlxy—1 M,y Mxy+1
s+ 1 v—1 + 1,4 s+ 1w+ 1




Spatial filters classification

« Spatial filters can be classified by effect:

— Smoothing Filters: Aim to remove some small isolated
detailed pixels by some form of averaging of the pixels
In the masked neighborhood. These are also called
lowpass filters.

Examples include Weighted Average, Gaussian, and
order statistics filters.

— Sharpening Filters: aiming at highlighting some
features such as edges or boundaries of image objects.

Examples include the Laplacian , and Gradient filters.

« Spatial filters are also classified in terms of mask
size (e.g. 3x3, 5x5, or 7x7).



A weighted average filter - Example

and

P N
N AN
R NP

Forexample, if 1
16

(40 45 30

the neighbourhood subimage is| 41 50 20
60 70 25

then thepixel value of theoutputimage that corresponds to

the central pixel in the neighbourh ood is replaced with:

(40+2x45+30+2%x41+4x50+2x20+60+2x70+25)/16
=1nt(44.1875) = 44.




Smoothing filters

Smoothing Filters are particularly useful for
blurring and noise reduction.

Smoothing filters work Dby reducing sharp
transition in grey levels.

Noise reduction is accomplished by blurring with
linear or non-linear filters (e.g. the order statistics
filters).

Beside reducing noise, smoothing filters often
remove some significant features and reduce
Image quality.

Increased filter size result in increased level of
blurring and reduced image quality.

Subtracting a blurred version of an image from the
original may be used as a sharpening procedure.



Effect of Averaging Linear Filters Vs filter size
original 3x3 filter _ 5x5 filter

‘....... +....... +'-..-..

s A .t
A - =
- o LE
SRR e T B ik ¥
L, Sbrl Ly 8
Err e e o s e A, : 3
SErR Ry i At i
L (et ot ki b FiE x .

aaaaaadaadd asaaaaaadd aaaaaaad
c«ummB «ummBp R R

a .d d
?i)l(tir o iy - 35x35
i 1| I flter

saaaaaaad .sanananig b
| |

15x15 filter

The extent of burring increases the larger the filter is.



Filtering using MATLAB

MATLAB provides easy to use linear spatial filter functions:
— Definition: w=fspecial(‘type’, parameters)

IS used to create a filter of the declared type with the given
parameters which may gives the size or other values relating to the
given type.

— Applying: f=imfilter(c, w,f mode, boundary-options, size-options)
We normally use the defaults for the last 3 parameters:
‘corr’ for f_mode; O for boundary-option; ‘same’ for size

1 - rclear all

42— o=imread('original. bmp');

3= imview(e);

4 - w=fspecial('average'); 3This iz the default 3xdaveraging filter.

5 3 w=fspecial('average',>) stands for Sx5 filter.
B - Fi=imfilter(c,w);

T -  imshow(F2);

8 - imwrite(F2,'faveoriginal.bup')



Order Statistical filters

« These refer to non-linear filters whose response is based on ordering
the pixels contained in the neighborhood. Examples include Max, Min,
Median and Mode filters.

« The median which replaces the value at the centre by the median pixel
value in the neighbourhood, (i.e. the middle element when they are
sorted.

 Median filters are particularly useful in removing impulse noise, also
known as salt-and-pepper.

Noisy image Averaging 3x3 filter Median 3x3 filter



Order Statistics Filters in MATLAB

In MATLAB Order Statistics filter are applied as follows:
f = ordfilt2 (c, order, domain)

where order is the position required when the elements
of the given neighbourhood are sorted, and domain is a
matrix of 1’s and 0’s that specify the pixel locations in

the neighbourhood that are included in the computation.

1 — clear =all

= = c=imread!' Harin.lomp' ) ;-

3 — ircriew (o) ;

q — f=ordfilc2i(ic, 1, ones(3, 31 :

5 — im=how (L) ;-

B — imwrite (£, 'mminHarin.bmp']) :

v = f=ordfilc (e, 2, one=[(3, 3] :

o imshow (L) :

9 — imwrite (£, 'maxHarin.bimp']) -
10 — f=ordfilt (e, S5, onesI(3, 311 :
11 — irmshow (£
12 — irmwrite (£, 'mnmedianHarin.lmp' )




3x3 median 3X3 max 3X3 min



Sharpening Spatial Filters

« Sharpening aims to highlight fine details (e.g. edges) In
an image, or enhance detail that has been blurred
through errors or imperfect capturing devices.

 Image blurring can be achieved using averaging filters,
and hence sharpening can be achieved by operators
that invert averaging operators.

* In mathematics averaging is equivalent to the concept
of integration along the gray level range:

s=T(r) = jor p(W)dw.

Integration inverts differentiation and as before, we
need a digitized version of derivatives.



Derivatives of Digital functions of 2 variables

« As we deal with images, which are represented by
digital function of two variables, then we us the notion
of partial derivatives rather than ordinary derivatives.

 The first order partial derivatives of the digital image
f(x,y) in the x and in the y directions at (x,y) pixel are:

of _ a _ _
o = Ty = fOoy)and 0= F(xy+D)-f(xy)

 The first derivative is 0 along flat segments (i.e.
constant gray values) in the specified direction.

« Itis non-zero at the outset and end of sudden image
discontinuities (edges or noise) or along segments of
continuing changes (i.e. ramps) .



2"d order Derivatives & the Laplacian operator

 The first derivative of a digital function f(x,y) is another
digital image and thus we can define 2" derivatives:

0’ f a(af@)
- = f(x+1y)+ f(x-1y)-2f(x,y), and

ox” OX
of
2 o( )
(Zyz = é =f(X,y+D+ f(x,y-1-21(x,Y).

« Other second order partial derivatives can be defined
similarly, but we will not use here.

« The Laplacian operator of an image f(x,y) is:

o’f o°f
_|_

aXZ ayZ )

V2 =



Digital derivatives —Example
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Thus of o detects thick edges while o°f detects thin edges.
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2
but 0 %{2 produces a double responseat gray - level steps.



The Laplacian Filter

« The Laplacian operator, applied to an Image can be
Implemented by the 3x3 filter:

0 1 0O
vi(f)=|1 -4 1|
0 1 0

 Image enhancement is the result of applying the
difference operator:

0 -1 0
Lap(f)=f —V2(f)=|-1 5 —1|
0 -1 0




Laplacian filter in MATLAB

The Laplacian filter is a linear spatial filter, and hence we
can use similar instruction as for the averaging filter.

Definition: w=fspecial(‘laplacian’, parameters)
Here, parameters is a number O<a <1, and the default is 0.5.
Applying: f = imfilter(c, w)

L T R B N oy Y e e

T
= O

12

J AverageFiter m* H||Lamacmnﬁﬁ5hn1 ¥

clear all

c=imread (' Lyser. bop');

inwiew(e) ;

v=fspecial ('laplacian');: *0ne parameter 1z assoclated with Laplacian
3 which iz a nuwber a in the range [0..1].
3 The default iz a=0.5, which used here.

f=imfilteric,v): % Applying the laplacian operator

itrriew (£ :

imwrite (£, ' lapiyser.bop']) ;

Fl=c-1:; % Thiz iz use for enhahcing the input image.

imwview (F1l);

imwrite (Fl, 'LiPivser.bmp')




Laplacian filter —-Example

Original Image Image after Laplacian filer

Note the enhanced details after applying the Laplacian filter.



Laplacian
. Operator
>

Laplacian Enhanced

Image =f - V.




Combining various enhancement filters

The effect of the various spatial enhancement schemes
doesn’t always match the expectation, and depends on input
Image properties.

e.g. histogram equalization introduces some noise.

The application of any operator at any pixel does not depend
on the position of the pixel, while the desired effect is often
reqired in certain regions.

e.g. an averaging filters blurs smooth areas as well as
significant feature regions.

Enhancing an image is often a trial & error process.

In practice one may have to combine few such operations in
an iterative manner .

In what follows we try few combined operations.



LAPChris

HEChris LAPHECHhris HELAPChris



Combined Laplacian & HE

. 2 %

(a) Original, (b) After HE, (c) After Laplacian, (d) HE after Laplacian



Combining Average and Laplacian

"P. GHarin.bmp @ 100% (Index) =10] x| "Bl GHarinAve.bmp @ 100% (Index)

i

A

"B, GHarinLapAve.bmp @ 100% (Index)

"F. GHarinLAP.bmp @ 100% (Index) »mp @ 100% (Index)




Combining Laplacian & Median Filter

P, GHarin.bmp @ 180% (Index) . "7, GHarinMED.bmp @ 100% {Index)

"F. GHarinLAP.bmp @ 100% (Index) » "P. GHarinMedLap.bmp @ 100% (Index)




End of Chapter 3
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Key Features of Chapter 3:

 Fourier Transforms.

 Mathematical background: Complex numbers.
 Fourier Spectrum.

« 2-Dimensional DFT .

* Filtering in the Frequency Domain.
 Lowpass and Highpass Filters in the
~requency Domain .




Introduction

v The spatial domain refers to the representation of an
Image as the array of gray-level intensity.

v' The electromagnetic spectrum consist of sinusoidel
waves of different wavelengths (frequencies).

v The frequency content of an image refers to the rate at
which the gray levels change in the image

v Rapidly changing brightness values correspond to
high frequency terms, slowly changing brightness
values correspond to low frequency terms

v The Fourier transform is a mathematical tool that
analyses a signal (e.g. images) into its spectral
components depending on its wavelength (i.e.
frequency) content.



Fourier Transforms

v In 1822, Jean B. Fourier has shown that any function f(x) that
have bounded area with the x-axis can be expressed as a linear
combination of sines and/or cosines of different frequencies.

v' This has also developed for functions of 2 variables, e.g. images.
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lllustration of Fourier Analysis for images

11111

Every row is Sine wave of  Sine wave with frequncy 2~ Sine wave with frequncy 3

frequncy 1
B F ix.b 100% (Ind >
"Bl Frequency1+2+3.bmp @ 100% (In... [= |[B)X] 4 Eequencymmx. omp.2 (Index) (= ][B](X]

Combined waves frequncy 1+2+3 Mixed wave with frequncy 5, 2 &1




MATLAB generated images

v" MATLAB can be used to generate images with patterns of any
desired rate of change of brightness.
v' For this we need to use trigonometric functions of 2 variable as
indicated by the following code:
clear all;
A=zeros(256,256);
B=A;
for i1=1:1:256
for |]=1:1:256
A(i,j)=2*sin(pi*(i+2*j)/64); Il the 2’s and 64 can be changed
B(i,}))=cos(pi*(3*i+))/32); // the 3 and 32 can be changed
end
end
C=A+B;
Imshow(C);
iImwrite(C, 'SinoPattern2.bomp’)



Images generated from Sinoside function
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Mathematical Background - Complex numbers

A complex number z is a point (a,b) in the plane. Addition and
multiplication are defined as:

(a,b)+(c,d) =(a+c,b+d)
(a,b)*(c,d) = (ac-bd,ad+bc).
For example:

(3,2)+(1,-1) = (4,1), and

(2,1)*(2,-1) = (4-(-1),0) = (5,0).
A complex number z=(a,b) can be expressed as:

Z=a+ib.

Here i=(0,1), a is called the real part and b is the imaginary part of z.
It is easy to show that: i2=-1 (i.e. i=V-1).
The conjugate of a complex number z=a+ib is z* = a — Ib.
For example, if z= 3+2i then z* = 3 - 2I.
For any complex number z = a +ib, z z* =z*z = (a? + b?).
The complex numbers is an “algebraically closed field”.



Complex numbers — Polar representation

v' A complex z =a+ib can be represented as z=r cos 0 +i r sin 0,

where r=+v(a2+b?), and tan 0 =b/a. 4
v' Due to properties of sin 8 and cos 0, we write z=re'® r

For example: 1+iv3=2e™3 and 1+i=+2 e, \G
v For any 0, e'9=cos0 - i sin 6.

v' Roots of unity: The equation z" =1 has n complex solutions,
called n-th roots of unity, namly: z,=1, z,=e"?"*/n  z,=e!4®/n . and

z,=e?T(-/n - These are equidistant points on the unit circle.

4
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Fourier Transform - Definition

v The one-dim Fourier transform of a function f(x) is defined as:

F(u)::[f f (x)e™27 *dx.
and the inverse Fourier transform of F(u)is:

f@:ﬁf@ﬁWmL

v' The Discrete Fourier Transform (DFT) of f(x) is defined as:

1 M -1 _
F(U) _ Z f (X)e—|27ru X/ M .
M x=0

and the inverse Fourier transform is defined as:
M -1 _
f(X) _ Z F (u)e|27z'u x/ M .
u=0

v' The frequency domain of f(x), is the set {0, 1, ..., M-1} of u values.
v" Note that the e2™¥Mare simply the M-th roots of unity.



Fourier Transform - continued

v" Unlike f(x), F(u) is a complex valued function, and in terms of
circular functions:

F(u)= 1 le f (x)[cos(2zux/ M) —isin(2zux/ M )]

= (—le f (x)[cos(2zux/ M ))—|(—Z f (x)sin(2zux/M)),
lL.e. F(u)= R(u)+|l (u).

v The modulus of F(u), | F(u)|=[R(u)2 + I(u)3¥2, is called the
frequency spectrum of the transform.

v The phase angle of the transform is:

p(u) = tan () ;e((t))



The Fourier spectrum — Examples

Fx) |F ()]
™M
A K points
-7 - e [
I M points I I M points I
A discrete function, K=8. Its frequency spectrum.
|F ()]
2AK
Nd
£ix)
&

2K points

M points M points

A discrete function, 2K=16. Its frequency spectrum.



Fourier Transform in MATLAB

v The MATLAB fft(x) functions provides a fast
Implementation of the Fourier transform for one
dimensional function x=x(t).

v' The functions X = fft(x) and x = ifft(X) implement
the transform and inverse transform pair given
for vectors of any length m using the given
formulae. It exploits the doubling and shifting
properties of sine and cosine functions.

Example: MATLAB Help item on Fourier Transforms.



The 2-dimensional DFT

v" The DFT of a digitised function f(x,y) (i.e. an image) is defined as:

F(U,V)Z f(X y)e |27z(ux/I\/|+vy/N).

f(X, y): F(u,v)eiZE(ule+vy/N).

v" Note that, F(0,0) =the average value of f(x,y) and is refered to as
the DC component of the spectrum.

v Itis acommon practice to multiply the image f(x,y) by (-1)**. In
this case, the DFT of (f(x,y)(-1)**Y) has its origin located at the
centre of the image, i.e. at (u,v)=(M/2,N/2).



The Fourier spectrum — in 2D

— ¥

— w1
X
Image of a 20 X 40 white ] Centered Fourier spectrum
rectangle on a black hackground , shown after application

of size 512 % 512 pixels. of the log transformation



The Fouri

er spectrum —in 2D

SEM image of a damaged
itegrated circuit. Fourier
spectrum of .

The original image
contains two principal
features: edges run
approximately at *45° .

The Fourier spectrum
shows prominent
components in the
same directions.



Phase Data Images.

a) Original image b) Phase only image c) _Contrast enhanced ver§ion
of image (b) to show detail

v Phase data contains information about where objects are in the

Image,i.e. it holds spatial information.
v' Fourier transforms do not provide simultaneously frequency as

well as Spatial information.



Fourier Spectrum in MATLAB

The MATLAB Fourier transform of an image c is obtained by: fft2(c).
e.g. clear all
c=imread('SinoPattern.omp");
F=fft2(c); /] T1t2(C)=fft(fft(
S=abs(F);
L=log(1+double(S)); //To be able to display an image of
imShow(L, []);

/

a) Original image Log enhanced version of Fourier Spectrum



Fourier transform in MATLAB

v Using F=fftshift(fft2(c)) in stead of F=fft2(c) in the last
programme creates the centered Fourier Transform of c.

v' The MATLAB statement ifft2(F) is used to invert the
Fourier transform of the image c, where F = fft2(c ).

e I

File Edit VYiew Insert Tools Desktop Window Help N

Ded&g k| RAO® ¥ 0E|

Original image C

Log enhanced version
of Fourier Spectrum

Inverse Fourier
of fft2(c)




Filtering in the Frequency Domain

v' Filtering in the frequency domain aims to enhance an image
through modifying the its DFT. Thus, there is a need for an

appropriate filter function H(u,v).
v' The filtering of an image f(x,y) works in 4 steps:
1. Compute the centred DFT, F(u,v) = 3((-1)* f(x,y)).
2. Compute G(u,v) = F(u,v)H(u,v).
3. Compute the inverse DFT of G(u,v), 3(G(u,v)).
4. Obtain the real part of I1(G(u,v)).
5. Compute the filtered image g(x,y) = (-1) **Y R(3Y(G(u,v))).

v'  Generally, the inverse DFT is a complex-valued function.
However, when f(x,y) is real then the imaginary part of the inverse
DFT vanishes. Therefore for images step 4, above, doesn’t apply.



Filtering Iin the Frequency Domain — Scheme

Frequency domain filtering operation

. Filter [nverse
Fourier L .
— y function Fourier
transform :
Hiu,v) transform

Flu, v) Hu, v)F(u,v)

Pre-
processing

flx, v g(x,y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.



The Notch filter

v A simple filter that forces the average image value to become 0.

v' The average value of an image f(x,y) is the DC component of the
DFT spectrum i.e. F(0,0). The Notch filter is defined as follows:

0 if (u,v)=(M/2,N/2)
H(u,v)= :
1 otherwise.
. Image after
Qr|g|nal Notch filter
image application

v" Note that the edges stand out more than before filtering.
v When the average value is 0, some values of the filtered image
are negative, but for display purposes pixel values are shifted.



Lowpass and highpass filtering

Low frequencies in the DFT spectrum correspond to image
values over smooth areas, while high frequencies correspond to
detailed features such as edges & noise.

A filter that suppresses high frequencies but passes low
frequencies is called Lowpass filter, while filters that act to
reduce the low frequencies but passes high ones are called
Highpass filters.

Examples of such filters are obtained from circular Gaussian
functions of 2 variables (see next slide)

1 2 .2 2 .
H(u,v) = ﬁe‘(“ w)ae” - Lowpassfilter,

1

27O

H (u,V) = (L—e @ +'2°)  _Highpass filter.

2



Low-pass & High-pass filtering - Example

Low pass filtering

| T

High pass filtering
I >

WAL —— Origin

u'/\ﬁ

Low pass filtering results in blurring effects, while High pass
filtering results in sharper edges.



High-pass filtering —slight modification

v In the last example, the highpass filtered image has
little smooth gray-level detail as a result of setting
F(0,0) to 0. This can be improved by adding a constant.

v' Here we added 0.75/(zo?) to the previous high-pass filter.




Filtering In the Spatial and Frequency domains

v' Spatial filters are linked to, and often obtained from, filters in the
frequency domain.

v" The Convolution Theorem links the spatial domain to the
frequency domain.

v' The discrete convolution of f(x,y) and h(x,y) is defined as:

<
=
Z
R

L

o f(m n) h(x—m, y—n).

F (X, y)*=h(x,y) =

I
o

0 n

3
I

The convolution theorem states if F(u,v) and H(u,v)
are the Fourier transforms of f(x, y) and h(x, y), respectivaly,
then:

f(x,y)*h(x,y)=3I"(F(u,v)H (u,v)).



Filtering in the Spatial & Frequency -Example

Hu)
X

L

Low pass and High pass Filters in the Frequency domain

Hiu)

- I

fx) A x)
&

The corresponding Filters in the spatial domain.



Smoothing Frequency Domain Filters

v The ldeal Low-pass Filter is the simplest lowpass filter that
“cuts off” all high frequency component of the DFT that are at
a certain distance from the centre of the DFT.

1 If Duv)=sD
H (u,v) = { (V)= 5o
O If Duv)>D,
In this case D, is the cutoff frequency, and D(u,v) = [(u-M/2)?+(v- N/2)?] Y/
H (. v) Huw.v)
i f RS = “‘1 v * Iy = [, L‘]'
The Ideal The ILPE as The ILPF radial

Lowpass filter

an image

Cross section



ILPF pass filter — with different cutoff levels
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ILPF filtering: Cutoff frequencies at radii of 5, 15,30,80, and 230.




The Butterworth Lowpass Filter

v The Butterworth Lowpass Filter (BLPF) of order n and
with cutoff frequency at distance D, Is defined as:

1
H(u,v) = —.
1+[D(u,Vv)/D,]
Hu,v) H(!i. v)
,r_.l 10/
\ I. 11 —= v (5t
e .
The BLPF The BLPF as The BLPF radial

Lowpass filter an image cross section



BLPF filter — with different cutoff levels
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BLPF of order 2, Cutoff frequencies at radii of 5, 15,30,80, and 230.




The Gaussian Lowpass Filters

v The Gaussian Lowpass Filter (GLPF) with cutoff
frequency at distance D, Is defined as:

H (U,V) _ e—DZ(u,v)IZDo2 _

Hu, v) H(u. v)
F
T 1.0
| D, =10
0.667 D, - 20
D, = 40
) , D, = 100
v el Mu,v)
The GLPF The GLPF as The GLPF radial

Lowpass filter an image cross section



GLPF filter — with different cutoff levels
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Cutoff frequencies at radii of 5, 15,30,80, and 230.




Effect of Filtering on Image Quality

For the three types of filters, the severity of image degredation
decreases as the cutoff radii increase, but the type of degredation
Is filter dependent.

The cutoff radius in a lowpass filter, is the raduis of a circle
centred at the origin of the Furiour Spectrum of the image.

The power spectrum is the square of the Fourier spectrum,
l.e. P(u,v) = (Re(F(u,v)))? + (Im(F(u,v)))>.

The power enclosed by the cutoff radius is the % of the sum of
power values within the circle to the total image power.

Cutoff radii of
5,15,30, 80 and 230
enclose 92%,
94.6%, 96.4%, 98%,
and 99.5% of the
Image power.
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Effect of Filtering on Image Quality - coninued

The three lowpass filters result in blurring effect that
decreases with as the cutoff radius increases, with GLPF
being the best and ILPF being the worst.

ILPF filter also results in ringing effect which decreases
as the cutoff raduis increases. It remains evident even
for relatively large radii.

The ringing effect is not present in order 1 BLPF, and is
Imperceptable in order 2 BLPF. However, BLPF of higher
order do have visible ringing effect.

GLPF does not have ringing effect.

The ringing effect of lowpass filters can be explained In
terms of the convolution theorem which links convolution
In the spatial domain with filtering in the frequency
domain. (see next slide).



Ringing Effects of ILPF - lllustrated

mea /\ P
- - U U

(a) Freq. domain ILPF rad=5 The corresponding spatial domain filter

. E H lUI UI | Jﬁh

(b) Five Impulse image Convolution of (a) and (b) in the spatial domain



Sharpening Frequency Domain Filters

Edges and suden changes Iin Gray levels are
associated with high frequencies. Thus to enhance
and sharpen significant detaills we need to use
highpass filters n the frequency domain

The objectives of using highpass filters are the
reverse of those for using lowpass filters.

For any lowpass filter H (u,v) there is a highpass filter:
Hy,(u,v) = 1- H,(u,v).

Thus we have an Ideal highpass filter (IHPL), a
Butterworth highpass filter, and a Gaussian High pass
filter’



Sharpening Frequency Domain Filters

Edges and suden Gray level changes are associated
with high frequencies. Thus sharpening images can
be acheived by highpass frequency domain filters.

The objectives of using highpass filters are the
reverse of those for using lowpass filters.

For any lowpass filter H,;(u,v) there is a highpass filter:
Hy (u,v) = 1- H,(u,v).

Thus we can define an Ideal Highpass filter, a
Butterworth High frequency filter, and a Gaussian
Highpass filter.



Sharpening Frequency Domain Filters

v The ldeal Highpass Filter “cutsoff” all low frequencies of the
DFT but maintain the high ones that are within a certain
distance from the centre of the DFT.

1 If D(uv)> D,

H (u,v) =
¢ ) {0 If D(u,v)< D,

In this case D, is the cutoff frequency, and D(u,v) = [(u-M/2)?+(v- N/2)?] %2

Hiee, )

The IHPF filter The IHPF as an image



IHPF pass filter — with different cutoff levels
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IHPF filtering: Cutoff frequencies at radii 15,30,80. Ringing is visible



The Butterworth High pass Filter

v' The Butterworth Highpass Filter (BHPF) of order n and
with cutoff frequency at distance D, Is defined as:

1

H(u,v)=1- .
1+[D(u, v)/D I

-"'"___"'"-..- #

The BHPF as
The BHPF an image



BHPF filter — with different cutoff levels
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BHPF of order 2, Cutoff frequencies at radii of 15,30, and 80.

The boundaries are less distorted than with the IHPF.



The Gaussian Highpass Filters

v The Gaussian Highpass Filter (GHPF) with cutoff
frequency at distance D, Is defined as:

H (U,V) :1_ e—Dz(u,v)/2Do2 .

The GHPF filter The GHPF as an image



GHPF filter — with different cutoff levels
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GHPF filter : Cutoff frequencies at radii of 15,30, and 80.
The results are smoother than those obtained by the other 2 filters



Other filters

v It is possible to construct Highpass filters as the
difference of two Gaussian lowpass filters.

v. The Laplacian can be implemented in the frequency
domain as the filter:

H(u,v) = -(u?+v?).

This follows from the fact that:

52 f@i’j’ ) failx Y _ (u) F U v) + (V) F (U, v)

=-(u* +Vv)F(u,v).
v Itis customary to use the centered version, i.e.
H(u,v) = - [(u-M/2)+(v-N/2)?].

The Laplacian filtered image in the spatial domain is
obtained by computing the inverse DFT of H(u,v)F(u,v).



End of Chapter 5



