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Chapter 1 

• Define the field and its scope. 

• Give a brief introduction about image 

processing history field. 

• Explain basic terminology and notations. 

• What will take in next chapters. 

 



An Image  

is Worth more than a Thousand 

Words!!! 



What is digital Image? 



What is digital Image? 



Types of Digital Images 



Binary Images 



Gray scale Images 



Color Images 



What is Digital Image Processing? 

Image is nothing but a function in two dimensions  

plotted as a 2D display with expressing the value 

of the function as intensity of a gray level; we can  

display it as a 3D figure. 

 

The value is called intensity. 

 

 

Digital image processing refers to processing a 

digital image, where X and Y have finite elements 

(picture elements)or (pixels). 

 

Images are not limit to the visible range or any 

other range of the EM spectrum. 



What is processing? 

Low-level processing: the input is image and the output is image. Primitive  

operations, e.g., scaling, coloring…etc. 

 

Mid-level processing: the input is image and the output is features, objects, 

regions,…etc. For recognition and classification. 

 

High-level processing: the input is recognized objects, regions,… and the 

output is understanding making sense etc. This is the field of computer vision 

image analyses,…etc.  



1920’s Picture Transmission Systems  

A digital picture produced in 1921 

from a coded tape by a telegraph 

printer with special type faces. 

One of the first applications of digital 

images was in the newspaper industry. 

Pictures were sent by submarine cable 

between London and New York. 

Introduction of the Bartlane cable 

picture transmission system in the 

early 1920s reduced the time required 

to transport a picture across the 

Atlantic from more than a week to less 

than three hours. 



Birth of Digital Image Processing (DIP) 
• The first computers powerful enough to do meaningful image processing 

appeared in the early 1960s for the space program. 

• DIP techniques began in the late 1960s and early 1970s to be used in medical 

imaging, remote Earth resources observations, and astronomy.  

• The invention in the early 1970s of computerized axial tomography (CAT), 

also called computerized tomography (CT) for short, is one of the most 

important events in the application of image processing in medical diagnosis.  

The first picture of the moon by the U.S. spacecraft Ranger 7 , July 31,1964 



What is, and how do we get, an Image?  

• Images model variation in a detected level 

of activities over a spatial domain of interest 

as a 2-dimensional data set.  

• Measured activities are either: 

– inherent in the imaged object itself 

 e.g. Thermal emission, and Brain activities 

– result of interaction with to its environment 

 e.g. Light reflected on the surface of objects 

– OR a combination of both 

 e.g.  X-rays and CAT images 



Types of Imaging Systems 

• Imaging systems depend on energy sources  

• Sources of energy include: 

– the electromagnetic energy (EM) spectrum,  

– Ultrasonic,  

– acoustic, and  

– electronic 

• Accordingly there are different types of imaging 

systems and an ever growing list of applications. 

• Multi-spectrum imaging is also available 



The Electromagnetic Spectrum  





































Security applications 

Most current Mobile Phones are 

equipped with digital cameras. Here we 

are showing image preprocessing 

procedure used for face recognition 

system for PDA developed at 

Buckingham University. 



Digital Image Processing system components  

• Digital Image Processing assumes the 

existence of a source of energy, a sensor 

devise to detect the emitted/reflected energy, 

a coding system for the range of 

measurements, and a display device.  

• However, a modern DIP system requires 

powerful computing hardware, specialised 

software, large storage systems and 

communication devices.  



Digital Image Processing system components  





End of Chapter 1 
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Chapter 2 

Digital Image Fundamentals 

1.  Elements of Visual Perception  

2.  Light and the Electromagnetic Spectrum  

3.  Image Sensing and Acquisition  

4.  Image Sampling and Quantization  

5.  Some Basic Relationships between Pixels  

6. Image Histograms 

7. Color Images 

8. Image File Formats 



1. Elements of Visual Perception  



1. Elements of Visual Perception  



1. Elements of Visual Perception  



1. Elements of Visual Perception  



1. Elements of Visual Perception  



1. Elements of Visual Perception  



1. Elements of Visual Perception  



2. Light and the Electromagnetic 

Spectrum 



2. Light and the Electromagnetic 

Spectrum 



2. Light and the Electromagnetic 

Spectrum 



3. Image Sensing and Acquisition 

Transform of illumination energy into digital images:  

 

 

The incoming energy is transformed into a voltage by the combination of 

input electrical power and sensor material.  

 

 

Output voltage waveform = response of the sensor(s)  

 

 

A digital quantity is obtained from each sensor by digitizing its response.  



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3. Image Sensing and Acquisition 



3.1. A Simple Image Formation Model 



3.1. A Simple Image Formation Model 



3.1. A Simple Image Formation Model 



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  
Decreasing spatial resolution reduces image quality proportionally - 

Checkerboard pattern.  

† Images extracted from DIP, 2nd Edition, Gonzalez & Woods, PH. 



4. Image Sampling and Quantization  

• The checkerboard effect is not visible if a lower–resolution 

image is displayed in a proportionately small window.   



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  

8 bits 7 bits 6 bits 

5 bits 
4 bits 3 bits 

2 bits 1 bit 0 bits  !!! 



4. Image Sampling and Quantization  



4. Image Sampling and Quantization  
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4. Image Sampling and Quantization  
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4. Image Sampling and Quantization  



4. Image Sampling and Quantization  



5. Some Basic Relationships Between Pixels 



5. Some Basic Relationships Between 

Pixels 



5. Some Basic Relationships Between 

Pixels 



5. Some Basic Relationships Between 

Pixels 



6. Image Histogram  

 The distribution of gray levels in an image convey some 

useful information on the image content. 

 For any image f of size mxn and Gray Level resolution k, 

the histogram of h is a discrete function defined on the set 

{0, 1, …, 2k-1} of gray values such that h(i) is th number of 

pixels in the image f which have the gray value i. 

 It is customary to “normalise” a histogram by dividing h(i) 

by the total number of pixels in the image, i.e. use the 

probability distribution:  

p(i) = h(i)/mn. 

 Hstograms are used in numerous processing operations. 

 



6. Histograms - Examples 



6. Local Vs. Global Histograms – Image Features 

• Histograms for parts of an image provide useful 

tools for feature analysis. 

• Local Histograms provide more information on 

image content than the global histogram. 



7. Color Images 



7. Color Images 



7. Color Images 

 Light reflected on an object and detected by a sensor is 

an additive (linear) combination of different wavelengths 

(i.e. Colours).  

 Red, Green, and Blue are the primary colors. Other 

colors are a linear combination of R, G and B. i.e light 

color space is 3 dimentional with {R, G, B} as its base 

and every other colour can be expressed as: 

a*R +b*G + d*B,     

where 0a,b,c 1  and      a + b + c = 1. 

 RGB perfectly interpret of human vision 



8. Image files Format  

Image files consists of two parts:  

 A header found at the start of the file  and consisting 

of parameters regarding: 

 Number of rows (height) 

 Number of columns (width) 

 Number of bands (i.e. colors) 

 Number of bits per pixel (bpp) 

 File type 

 Image data which lists all pixel values (vectors) on 

the first row, followed by 2nd row, and so on. 



 Common image file formats are: 

 BIN, RAW 

 PPM,PBM,PGM 

 BMP 

 JPEG 

 TIFF 

 GIF 

 RAS 

 SGI 

 PNG 

 PICT, FPX 

 EPS 

 VIP 



End of Chapter 2 
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Key Features of Chapter 3: 

• Image Enhancement. 

• Basic Gray Level Transformations. 

• Histogram Processing. 

• Smoothing Spatial Filters. 

• Sharping Spatial Filters. 

• Combining Different Spatial enhancement 

Techniques. 



Introduction   
 Image Applications require a variety of techniques that can be divided 

into two main categories: 

 Image Processing, and  

 Image Analysis 

 Image processing techniques include: 

 Image Enhancement  

 Image Restoration 

 Image Compression (for storage or transmission)   

 Image Analysis tasks include: 

 Feature Detection and Recognition 

 Image Classification 

 Image Indexing  

 Image analysis do rely on Image pre-processing steps.   



Image Enhancement - Examples 

Poor contrast image Enhanced image 

Blurred image Sharpened image 



Image Restoration - Examples 

Distorted image Restored image 

Geometrically distorted image Restored image 



Image Enhancement – Aims & Objectives 

 Image enhancement aims to process an image so that 

the output image is more suitable than the original.  

 Suitability is a application specific and enhancement is 

often a trial & error process. 

 It either helps solve some computer imaging problems, 

or is used as an end in itself to improve image quality. 

 Enhancement methods are either used as a 

preprocessing step to other imaging tasks, or as post-

processing to create a more visually desirable image.  

 Enhancement includes improving contrast, sharpening, 

highlighting, or smoothing some features for display 

and/or for further analysis.  



Image Enhancement in the spatial domain   

 Success of enhancement may be evaluated subjectively 

by viewers or automatically according to defined criterion.  

 Image enhancement methods are classified as:  

 Enhancement in the Spatial Domain – using image 

transforms that manipulate the image by changing  its pixel 

values or move them around. 

  Enhancement in the Frequency domain using image 

operators that manipulate the frequency information in the 

subbands which in turn have noticeable spatial effects.   

 In this chapter, we are concerned with Spatial domain 

based enhancement.  



Dynamic Range,Contrast and Brightness concepts 

 The dynamic range of an image is the exact subset of grey values 

{0,1,…,L-1} that are present in the image. (In most cases L=255). 

 Image histogram can be used to determine its dynamic range 

 When the dynamic range contains significant proportion of the grey 

scale, then the image is said to have a high dynamic range and the 

image will have a good contrast.  

 Low–contrast images can result from  

 poor illumination 

 Lack of dynamic range in the imaging sensor 

 Wrong setting of lens aperture at the image capturing stage. 

 The most common enhancing procedures to deal with these 

problems are Gray Level transform  



Examples 

Poor 

contrast 

Reasonable 

but not 

perfect  

contrast 



Image Histogram & Image contrast 

Histograms also hold information about image contrast. 

In low contrast images, 

histogram components 

are crammed in a 

narrow central part of 

the gray scale. 

In high contrast images, 

the histogram occupy 

the entire  gray scale 

(i.e. has high dynamic 

range) in a near uniform 

distribution. 



Image Histogram & Image brightness 

In dark images, 

histogram 

components are 

concentrated on 

the low (dark) side 

of the gray scale. 

In bright images, 

histogram 

components are 

biased toward the 

high (bright) side 

of the gray scale. 

Image histogram holds information on brightness level 



MATLAB Implementation of Spatial domain transforms 

• In MATLAB Grey level transforms can be 

implemented by a double nested loop using the 

transform formula.  

• Filtering in the spatial domain can also be 

implemented by (triple) nested loops but one 

has to append the image on the boundaries of 

the image using some agreed scheme (by 

adding zeros, duplicating boundaries).  

• MATLAB provides special functions for the most 

commonly used filters. 



Image Operators in the Spatial domain 

• An image operator in the spatial domain T applied on an image 

f(x,y) defines an output image: 

g(x,y) = T(f(x,y)) 

 which is defined in terms of the pixel values in a neighbourhood 

centred at (x,y).  

• Most commonly used neighbourhoods are squares or rectangles. 

• The simplest form of T is when the neighbourhood consists of the 

pixel itself alone, i.e  it depends on f(x,y) alone.  

 In this case, T is a Gray Level transform which maps the set 

{0,1,…,L-1} of grey levels into itself, i.e. is a function: 

T: {0,1,…,L-1}  {0,1, …, L-1}.  

• Larger size neighbourhood-based operators are referred to as 

mask processing or filtering.  



Simple Gray Level transforms 

The most common type of grey level transforms are linear 

or piecewise (not necessarily continuous) linear functions 

Negative Image Transform

0

51

102

153

204

255

0 51 102 153 204 255

The Image Negative transform 

an image with gray level in the 

range {0,1,…,L-1} using the 

negative map: 

TNeg (i)  = L - 1 – i. 

e.g. if L = 28 = 256 then  

TNeg(i)  = 255 – i. 

 



Negative transform in MATLAB 

Artificial.bmp 

Artificial-neg.bmp 



Example – Negative of an image  



• For any 0 < t < 255 the 

threshold transform Thrt  

is defined for each i by: 

   0  If i < t 

Thrt (i) =   i  otherwise 

 

Piecewise Linear Gray Level transforms 

Thresholding Transforms

0

51

102

153

204

255

0 51 102 153 204 255

Thr80 



The Threshold Transform in MATLAB 

In MATLAB,  Grey level transforms can be implemented by nested loop.   



This chart represents  the 

transform T which  is 

defined for each i by: 

       2*i       If i  110 

T (i) =        i         If 110 <i  200 

           255         If i >200. 

 

A Piecewise Linear Gray Level transform 

T 

Peicewise_linear

0
15
30
45
60
75
90

105
120
135
150
165
180
195
210
225
240
255

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255



The above Piecewise Transform in MATLAB 



Special Grey Level transforms 

• Grey level  Stretching aims 

to increase the dynamic 

range of an image. It 

transforms the grey levels in 

the range {0,1,…,L-1} by a 

piecewise  linear function. 

 

• Gray level Slicing aims to 

highlight a specific range 

[A…B] of Grey levels. It 

simply maps all Grey values 

in the chosen range to a 

constant. Other values are 

either mapped to another 

constant or left unchanged 



Gray level stretching - Example 
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Grey-level stretching 

Histogram Before Histogram After 



Gray-level Stretching with Clipping at Both Ends  

Original image  Modified image with stretched gray levels  

This operator is implemented by the function: 

 0    if i <80 

S(i) =  255(i - 80)/100  if 80  i  180 

 255   if i > 180 

S 



Gray-level Stretching with Clipping at Both Ends  

Original image  Image after gray levels stretch 

Histogram Before Histogram after 



Gray Level Slicing - Examples 



Non-linear Basic Gray Level transforms 

• The Log transform is based on a 

function of the form: 

Logc (i)  = = c Log(1+ i) 

 for a constant c.  

 Depending the value of c, this 

function darken the pixels in a 

non-uniform way.  

• The Gamma transform is based 

on a function of the form: 

Gamma(c, ) (i) = c *i 
 

 for constants c and . 

 The effect of this transform 

depends on the value of c and . 

Log(1+i)

0
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-20 35 90 145 200 255

Gamm(i,0.7)

0

10

20

30

40

50

60

-45 5 55 105 155 205 255

These transforms effect different images in different ways. 



 The Effect of different Gamma transforms   

Original MRI image Gamma transform, c =1,  =0.6 Gamma transform, c =1,  =0.4 

This example indicates that different  values have different effect  



Another Example 

Original 

Aerial 

image 

Gamma 

transform, 

c =1,  =3.0 

Gamma 

transform,   

c =1,   =4.0 

Gamma 

transform,   

c =1,   =5.0 

This example also link between effects and  values. But the 2 examples, 

show that the characteristics of the input image results in different effects.   



Gamma Transform - Example 

Original Aerial image 

Gamma 

Transform, 

c =1,  =4.0 

Transformed image 



Histogram-based Gray Level Transforms 

 Image histograms provide statistical information that 

are useful for many image processing tasks such as 

enhancement, compression and segmentation.  

 Any gray-level transform, including the ones discussed 

in the last chapter, changes the input image histogram 

in way that depended on the transform parameter(s). 

 Question: 

 Is it possible to design gray-level transforms that 

manipulate image histograms in specified ways?   

 Filtering (i.e. image operators that change a pixel value 

in terms of a subset of a neighboring pixels) can also 

be used to enhance images. 



Enhancement through Histogram Manipulation 

• Histogram manipulation aims to determine a gray-level 

transform that produces an enhanced image that have a 

histogram with desired properties. 

• The form of these gray-level transforms depend on the nature 

of the histogram of the input image and desired histogram. 

• Desired properties include having a near uniformly distributed 

histograms or having a histogram that nearly match that of a 

reference (i.e. template) image.   

• For simplicity, we normalize the gray levels r so that 0  r  1  

rather than being in the set {0,1, …, L-1}. 

 The gray level transforms are assumed to be based on an onto 

monotonically increasing continuous functions: 

 T : [0,1]  [0,1]: r  s =T(r). 

 These conditions on T ensures that T has an inverse function.  



Histogram Equalisation 

• This works for continuous  pdf’s, and for a discrete set 

{0,1,…,L-1} of gray levels it translates to: 

.)()(
0
r

dwwprTs

• Due to the randomness of light sources and sensor 

position among other factors we assume that gray 

levels in an Image is a random variable with probability 

density function (pdf) at gray level r being the expected 

proportion of pixels that have r gray value.    

.
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Where Freq(i) is the number of pixels in the image that have 

Gray value I, and N is the image size 



Pseudo Code for Histogram Equalisation 

Step 1: Scan the image to calculate the Freq [0..L-1], i.e. histogram 

Step 2: From the Freq [ ] array compute the cumulative frequency 

 array  Cum_freq [0...L-1]: 

         {  Cum-freq[0] =Freq[0]; 

             for i=1 to L-1 

       Cum_freq[i] =Cum_freq[i-1]+Freq[i]; 

          } 

Step 3: Determine the HE transformation lookup table:  

         for i=1 to L-1 

   { j= round(Cum_freq[i]*(L-1)/N); 

     T[i] =j; 

      inv_T[j] = i; 

   } 

Step 4: Transform the image using the lookup table T. 

Step 5: Open a file “Inv_HE” and write inv_T entries into it. 



Histogram Equalisation in MATLAB 



Example 1 

• Histogram is 

nearer to 

uniform than 

original.  

• Improved 

Contrast but 

some added 

noise. 



Histograms Equalisation – Example 2 

Gray levels in the output image are not very uniformly distributed.  



Example 3 

Original 

Histogram 

Equalised 

Image 



Example 4 



Example 5 

Original 

After HE 

operation  



Example 6 



Example 7 



Remarks on HE effects 

• Histogram Equalisation does improve contrast in 

some cases, but it may introduce noise and other 

undesired effect. 

• Image regions that are dark and not clearly visible 

become clearer but this may happen at the expense 

of other regions. 

• These undesired effect is a consequence of 

digitization. When digitise the continuous 

operations rounding leads to approximations. 

• Images for which different regions exhibit different  

brightness level, may benefit from applying HE on 

sub-blocks of the images.  



Histogram Matching 

• The previous examples show that the effect of HE 
differs from one image to another depending on 
global and local variation in the brightness and in the 
dynamic range. 

• Applying HE in blocks may introduce boundary 
problems, depending on the block size. 

• Histogram Matching is another histogram 
manipulation process which is useful in normalizing 
light variation in classification problems such as 
recognition.   

• HM aims to transform an image so that its histogram 
nearly matches that of another given image.  

• HM is the sequential application of a HE transform of 
the input image followed by the inverse of a HE 
transform of the given image.     



Pseudo Code for Histogram Matching 

Step 1: Open the “Inv_HE” a file and read its entries into inv_T0. 

  This file should have been created by the HE++ algorithm 

 for a good template image. 

Step 2. Scan the input image I to calculate the Freq[0..L-1].  

Step 3: From the Freq[] array compute the cumulative     

 frequency array  Cum_freq[0...L-1]: 

         {  Cum-freq[0] =Freq[0]; 

             for i=1 to L-1 

       Cum_freq[i] =Cum_freq[i-1]+Freq[i];} 

Step 4: Determine the HM transformation lookup table:  

         for i=1 to L-1 

      j = round(Cum_freq[i]*(L-1)/N); 

     HM_T[i] =Inv_T0[j]; 

Step 5: Transform the image using the lookup table HM_T. 



Spatial filters classification 

• Spatial filters can be classified by effect:  

– Smoothing Filters: Aim to remove some small isolated 

detailed pixels by some form of averaging of the pixels 

in the masked neighborhood. These are also called 

lowpass filters. 

 Examples include Weighted Average,  Gaussian, and 

order statistics filters.  

– Sharpening Filters: aiming at highlighting some 

features such as edges or boundaries of image objects. 

 Examples include the Laplacian , and Gradient filters. 

• Spatial filters are also classified in terms of mask 

size (e.g. 3x3, 5x5, or 7x7). 



Filtering in the spatial domain 

• Filtering in the spatial domain refers to image 
operators that transform the gray value at any pixel 
(x,y) in terms of the pixel values in a square 
neighbourhood centred at (x,y) using a fixed integer 
matrix of the same size. 

• The integer matrix is called a filter, mask, kernel or a 
window.  The operation is mainly the inner product 
(also known as the convolution) of the pixel 
neighbourhood subimage with the filter. 

• The filtering process works by replacing each pixel 
value with the result of convolution at the pixel.   

• Filtering is often used to remove noise in images that 
could occur as a result of less than perfect imaging 
devices, signal interference, or even as a result of 
image processing such as HE transforms.   



Spatial Filters - illustration 



Spatial filters classification 

• Spatial filters can be classified by effect:  

– Smoothing Filters: Aim to remove some small isolated 

detailed pixels by some form of averaging of the pixels 

in the masked neighborhood. These are also called 

lowpass filters. 

 Examples include Weighted Average,  Gaussian, and 

order statistics filters.  

– Sharpening Filters: aiming at highlighting some 

features such as edges or boundaries of image objects. 

 Examples include the Laplacian , and Gradient filters. 

• Spatial filters are also classified in terms of mask 

size (e.g. 3x3, 5x5, or 7x7). 



A weighted average filter - Example 
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Smoothing filters 

• Smoothing Filters are particularly useful for 
blurring and noise reduction.  

• Smoothing filters work by reducing sharp 
transition in grey levels. 

• Noise reduction is accomplished by blurring with 
linear or non-linear filters (e.g. the order statistics 
filters).  

• Beside reducing noise, smoothing filters often 
remove some significant features and reduce 
image quality. 

• Increased filter size result in increased  level of 
blurring and reduced image quality. 

• Subtracting a blurred version of an image from the 
original may be used as a sharpening procedure. 



Effect of Averaging Linear Filters Vs filter size 

original 3x3 filter 5x5 filter 

9x9 

filter 

15x15 filter 

35x35 

filter 

The extent of burring increases the larger the filter is. 



Filtering using MATLAB 

• MATLAB provides easy to use linear spatial filter functions: 

– Definition:  w=fspecial(‘type’, parameters)  

 is used to create a filter of the declared type with the given 
parameters which may gives the size or other values relating to the 
given type. 

–  Applying: f = imfilter(c, w, f_mode, boundary-options, size-options) 

 We normally use the defaults for the last 3 parameters: 

 ‘corr’ for f_mode; 0 for boundary-option; ‘same’ for size   



Order Statistical filters 

• These refer to non-linear filters whose response is based on ordering 
the pixels contained in the neighborhood. Examples include Max, Min, 
Median and Mode filters.  

• The median which replaces the value at the centre by the median pixel 
value in the neighbourhood, (i.e. the middle element when they are 
sorted. 

• Median filters are particularly useful in removing impulse noise, also 
known as salt-and-pepper. 

Noisy image Averaging 3x3 filter Median 3x3 filter 



Order Statistics Filters in MATLAB 

In MATLAB Order Statistics filter are applied as follows: 

f = ordfilt2 (c, order, domain) 

where order is the position required when the elements 
of the given neighbourhood are sorted, and domain is a 
matrix of 1’s and 0’s that specify the pixel locations in 
the neighbourhood that are included in the computation. 



Example – Effect of different order statistics filters 

Adding Noise 

3x3 median 3x3 max 3x3 min 



Sharpening Spatial Filters 

Integration inverts differentiation and as before, we 

need a digitized version of derivatives.  
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• Sharpening aims to highlight fine details (e.g. edges) in 

an image, or enhance detail that has been blurred 

through errors or imperfect capturing devices.   

• Image blurring can be achieved using averaging filters, 

and hence sharpening can be achieved by operators 

that invert averaging operators. 

• In mathematics averaging is equivalent to the concept 

of integration along the gray level range: 



Derivatives of Digital functions of 2 variables 

• The first derivative is 0 along flat segments (i.e. 

constant gray values) in the specified direction.   

• It is non-zero at the outset and end of sudden image 

discontinuities (edges or noise) or along segments of 

continuing changes (i.e. ramps)  .  
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• As we deal with images, which are represented by 

digital function of two variables, then we us the notion 

of partial derivatives rather than ordinary derivatives.   

• The first order partial derivatives of the digital image 

f(x,y) in the x and in the y directions at (x,y) pixel are:  



2nd order Derivatives & the Laplacian operator  

• Other second order partial derivatives can be defined 

similarly, but we will not use here.    

• The Laplacian operator of an image f(x,y) is:  
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• The first derivative of a digital function f(x,y) is another 

digital image and thus we can define 2nd derivatives: 

.
2

2

2

2
2

y

f

x

f
f













Digital derivatives –Example  
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The Laplacian Filter  

• The Laplacian operator, applied to an Image can be 

implemented by the 3x3 filter: 

• Image enhancement is the result of applying the 

difference operator: 
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Laplacian filter in MATLAB 

• The Laplacian filter is a linear spatial filter, and hence we 

can use similar instruction as for the averaging filter. 

– Definition:  w=fspecial(‘laplacian’, parameters)  

 Here, parameters is a number 0 a  1, and the default is 0.5. 

–  Applying: f = imfilter(c, w)   



Laplacian filter –Example  

Note the enhanced details after applying the Laplacian filter. 

Original Image Image after Laplacian filer 



Example  

Laplacian 

Operator 

Laplacian Enhanced 

Image = f  - 2f. 



Combining various enhancement filters 

• The effect of the various spatial enhancement schemes 

doesn’t  always match the expectation, and depends on input 

image properties. 

 e.g. histogram equalization introduces some noise.   

• The application of any operator at any pixel does not depend 

on the position of the pixel, while the desired effect is often 

reqired in certain regions. 

 e.g. an averaging filters blurs smooth areas as well as 

significant feature regions.    

• Enhancing an image is often a trial & error process. 

 In practice one may have to combine few such operations in 

an iterative manner . 

     In what follows we try few combined operations.  



Combining Laplacian and HE 

HEChris HELAPChris LAPHEChris 

LAPChris 



Combined Laplacian & HE 

(a) Original, (b) After HE, (c) After Laplacian, (d) HE after Laplacian   

(a) 

(c) (d) 

(b) 



Combining Average and Laplacian 



Combining Laplacian & Median Filter  



End of Chapter 3 
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Key Features of Chapter 3: 

• Fourier Transforms. 

• Mathematical background: Complex numbers. 

• Fourier Spectrum. 

• 2-Dimensional DFT . 

• Filtering in the Frequency Domain. 

• Lowpass and Highpass Filters in the 

Frequency Domain . 



Introduction  

 The spatial domain refers to the representation of an 

image as the array of gray-level intensity.   

 The electromagnetic spectrum consist of sinusoidel  

waves of different wavelengths (frequencies).   

 The frequency content of an image refers to the rate at 

which the gray levels change in the image 

 Rapidly changing brightness values correspond to 

high frequency terms, slowly changing brightness 

values correspond to low frequency terms 

 The Fourier transform is a mathematical tool that 

analyses a signal (e.g. images) into its spectral 

components depending on its wavelength (i.e. 

frequency) content. 



Fourier Transforms  

 In 1822, Jean B. Fourier has shown that any function f(x) that 

have bounded area with the x-axis can be expressed as a linear 

combination of sines and/or cosines of different frequencies. 

 This has also developed for functions of 2 variables, e.g. images. 

+ 

+ 

+ 

= 



Illustration of Fourier Analysis for images  

Every row is Sine wave of 

frequncy 1 

Sine wave with frequncy 3 Sine wave with frequncy 2 

Mixed wave with frequncy 5, 2 &1 Combined waves frequncy 1+2+3 



MATLAB generated images  

 MATLAB can be used to generate images with patterns of any 

desired rate of change of brightness. 

 For this we need to use trigonometric functions of 2 variable as 

indicated by the following code: 

clear all; 

A=zeros(256,256); 

B=A; 

for i=1:1:256 

    for j=1:1:256 

        A(i,j)=2*sin(pi*(i+2*j)/64);    // the 2’s and 64 can be changed  

        B(i,j)=cos(pi*(3*i+j)/32); // the 3 and 32 can be changed  

    end 

end 

C=A+B; 

Imshow(C); 

imwrite(C, 'SinoPattern2.bmp') 



Images generated from Sinoside  function  



Mathematical Background - Complex numbers  

 A complex number z is a point (a,b) in the plane. Addition and 

multiplication are defined as: 

(a,b)+(c,d) =(a+c,b+d) 

(a,b)*(c,d) = (ac-bd,ad+bc). 

For example: 

 (3,2)+(1,-1) = (4,1), and  

(2,1)*(2,-1) = (4-(-1),0) = (5,0).  

 A complex number z=(a,b) can be expressed as: 

z=a+ib. 

 Here i=(0,1), a is called the real part and b is the imaginary part of z.   

 It is easy to show that:  i2 =-1 (i.e. i=-1).  

 The conjugate of a complex number z=a+ib is z* = a – ib.  

 For example, if z= 3+2i then z* = 3 – 2i.  

 For any complex number z = a +ib, z z* =z*z = (a2 + b2).   

 The complex numbers is an “algebraically closed field”. 



 A complex z =a+ib  can be represented as z = r cos  +i r sin ,  

 where   r = (a2+b2),  and  tan  =b/a. 

 Due to properties of sin  and cos  , we write z = rei  

 For example:  1 + i3 = 2 ei/3,  and  1+i = 2 ei/4 . 

 For any ,   e-i = cos - i sin .  

 Roots of unity: The equation zn =1  has n complex solutions, 

called n-th roots of unity, namly: z0=1,  z1=ei2 / n , z2=ei4 / n , ... , and  

zn-1=ei2 (n-1) / n.  These are equidistant points on the unit circle. 

Complex numbers – Polar representation  

 
r 

z 

z1 

z2 

z0 

zn-1 



Fourier Transform - Definition 

 The one-dim Fourier transform of a function f(x) is defined as: 
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 The Discrete Fourier Transform (DFT) of f(x) is defined as: 
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 The frequency domain of f(x), is the set { 0, 1, ..., M-1} of u values. 

 Note that the ei2ux/ M are simply the M-th roots of unity. 



Fourier Transform - continued 
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 Unlike f(x), F(u) is a complex valued function, and in terms of 

circular functions: 

 The modulus of F(u), F(u)= [R(u)2 + I(u)2]1/2 , is called the 

frequency spectrum of the transform.  

 The phase angle of the transform is: 
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The Fourier spectrum – Examples  

A discrete function, K=8.  Its  frequency spectrum.  

A discrete function, 2K=16.  Its  frequency spectrum.  



Fourier Transform in MATLAB 

 The MATLAB fft(x) functions provides a fast 

implementation of the Fourier transform for one 

dimensional function x=x(t).  

 The functions X = fft(x) and x = ifft(X) implement 

the transform and inverse transform pair given 

for vectors of any length m using the given 

formulae. It exploits the doubling and shifting 

properties of sine and cosine functions. 

Example: MATLAB Help item on Fourier Transforms.  



The 2-dimensional DFT 

 The DFT of a digitised function f(x,y) (i.e. an image) is defined as: 

 Note that,  F(0,0) = the average value of f(x,y)  and is refered to as 

the DC component of the spectrum. 
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 It is a common practice to multiply the image f(x,y) by (-1)x+y. In 

this case, the DFT of (f(x,y)(-1)x+y) has its origin located at the 

centre of the image, i.e. at (u,v)=(M/2,N/2).  



The Fourier spectrum – in 2D  



The Fourier spectrum – in 2D  

• The original image 

contains two principal 

features: edges run 

approximately at ±45ο . 

•  The Fourier spectrum 

shows prominent 

components in the 

same directions. 



Phase Data Images. 

a) Original image  b) Phase only image   c) Contrast enhanced version 

of image (b) to show detail  

 Phase data contains information about where objects are in the 

image,i.e. it holds spatial information. 

 Fourier transforms do not provide simultaneously frequency as 

well as Spatial information. 



Fourier Spectrum in MATLAB 

a) Original image  Log enhanced version of Fourier Spectrum 

The MATLAB Fourier transform of an image c  is obtained by:  fft2(c).  

e.g.  clear all 

 c=imread('SinoPattern.bmp'); 

 F=fft2(c);        // fft2(C)=fft(fft(   

S=abs(F);        

L=log(1+double(S));  //To be able to display an image of  

imShow(L, []); 



Fourier transform in MATLAB 

Log enhanced version 

of Fourier Spectrum 

 Using F=fftshift(fft2(c)) in stead of F=fft2(c) in the last 

programme creates the centered Fourier Transform of c.  

 The MATLAB statement  ifft2(F) is used to invert the 

Fourier transform of the image c, where F = fft2(c ).  

Original image c 
Inverse Fourier 

of fft2( c )   



Filtering in the Frequency Domain 

 Filtering in the frequency domain aims to enhance an image 

through modifying the its DFT. Thus, there is a need for an 

appropriate filter function H(u,v). 

 The filtering of an image f(x,y) works in 4 steps: 

1. Compute the centred DFT,  F(u,v) = ((-1)x+y f(x,y)).  

2. Compute G(u,v) = F(u,v)H(u,v). 

3. Compute the inverse DFT of G(u,v), -1(G(u,v)). 

4. Obtain the real part of -1(G(u,v)). 

5. Compute the filtered image g(x,y) = (-1) x+y R(-1(G(u,v))).  

 Generally, the inverse DFT is a complex-valued  function. 

However, when f(x,y) is real then the imaginary part of the inverse 

DFT vanishes. Therefore for images step 4, above, doesn’t apply.   



Filtering in the Frequency Domain – Scheme 



The Notch filter 

Original 

image  

  Note that the edges stand out more than before filtering.  

  When the average value is 0, some values of the filtered image       

     are negative, but for display purposes pixel values are shifted.     

Image after 

Notch filter 

application  

 A simple filter that forces the average image value to become 0.  

 The average value of an image f(x,y) is the DC component of the 

DFT spectrum i.e. F(0,0). The Notch filter is defined as follows: 
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Lowpass and highpass filtering 

 Low frequencies in the DFT spectrum correspond to image 

values over smooth areas, while high frequencies correspond to 

detailed features such as edges & noise.  

 A filter that suppresses high frequencies but passes low 

frequencies is called Lowpass filter, while filters that act to 

reduce the low frequencies but passes high ones are called 

Highpass filters.  

 Examples of such filters are obtained from circular Gaussian 

functions of 2 variables (see next slide) 
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Low-pass & High-pass filtering - Example 

Low pass filtering 

High pass filtering 

Low  pass filtering results in blurring effects, while High pass 

filtering results in sharper edges. 



High-pass filtering –slight modification 

  In the last example, the highpass filtered image has 

     little smooth gray-level detail as a result of setting  

     F(0,0) to 0. This can be improved by adding a constant. 

  Here we added 0.75/(2) to the previous high-pass filter.  



Filtering in the Spatial and Frequency domains 

 Spatial filters are linked to, and often obtained from, filters in the 

frequency domain. 

 The Convolution Theorem links the spatial domain to the 

frequency domain.  

 The discrete convolution of f(x,y) and h(x,y) is defined as: 
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Filtering in  the Spatial & Frequency -Example 

Low pass and High pass Filters in the Frequency domain 

The corresponding Filters in the spatial domain. 



Smoothing Frequency Domain Filters 

 The Ideal Low-pass Filter is the simplest lowpass filter that 

“cuts off” all high frequency component of the DFT that are at 

a certain distance from the centre of the DFT.  
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If  D(u,v)≤ D0
 

The Ideal 

Lowpass filter 
The ILPF as 

an image 

The ILPF radial 

cross section 

In this case D0  is the cutoff frequency, and D(u,v) = [(u-M/2)2+(v- N/2)2]1/2 



ILPF pass filter – with different cutoff levels  

ILPF filtering: Cutoff frequencies at radii of 5, 15,30,80, and 230.  



The Butterworth Lowpass Filter 

 The Butterworth Lowpass Filter (BLPF) of order n and 

with cutoff frequency at distance D0  is defined as:  
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Lowpass filter 
The BLPF as 

an image 

The BLPF radial 

cross section 



BLPF filter – with different cutoff levels  

BLPF of order 2, Cutoff frequencies at radii of 5, 15,30,80, and 230.  



The Gaussian Lowpass Filters 

 The Gaussian Lowpass Filter (GLPF) with cutoff 

frequency at distance D0  is defined as:  
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The GLPF 

Lowpass filter 
The GLPF as 

an image 

The GLPF radial 

cross section 



GLPF filter – with different cutoff levels  

Cutoff frequencies at radii of 5, 15,30,80, and 230.  



Effect of Filtering on Image Quality 

 For the three types of filters, the severity of image degredation 

decreases as the cutoff radii increase, but the type of degredation 

is filter dependent.  

 The cutoff radius in a lowpass filter, is the raduis of a circle 

centred at the origin of the Furiour Spectrum of the image.  

 The power spectrum is the square of the Fourier spectrum,  

 i.e.   P(u,v) = (Re(F(u,v)))2 + (Im(F(u,v)))2.  

 The power enclosed by the cutoff radius is the % of the sum of 

power values within the circle to the total image power.     

Cutoff radii of 

5,15,30, 80 and 230 

enclose 92%, 

94.6%, 96.4%, 98%, 

and 99.5% of the 

image power. 



Effect of Filtering on Image Quality - coninued 

 The three lowpass filters result in blurring effect that 

decreases with as the cutoff radius increases, with GLPF 

being the best and ILPF being the worst. 

 ILPF filter also results in ringing effect which decreases 

as the cutoff raduis increases.  It remains evident even 

for relatively large radii. 

 The ringing effect is not present in order 1 BLPF, and is 

imperceptable in order 2 BLPF. However, BLPF of higher 

order do have visible ringing effect. 

 GLPF does not have ringing effect.  

 The ringing effect of lowpass filters can be explained in 

terms of the convolution theorem which links convolution 

in the spatial domain with filtering in the frequency 

domain. (see next slide). 

  



Ringing Effects of ILPF - Illustrated  

(a) Freq. domain ILPF rad=5  

Convolution of (a) and (b) in the spatial domain  (b) Five Impulse image  

The corresponding spatial domain filter  



Sharpening Frequency Domain Filters 

 Edges and suden changes in Gray levels are 

associated with high frequencies. Thus to enhance 

and sharpen significant details we need to use 

highpass filters n the frequency domain 

 The objectives of using highpass filters are the 

reverse of those for using lowpass filters.  

 For any lowpass filter Hlp(u,v) there is a highpass filter: 

                              Hhp(u,v) = 1- Hlp(u,v). 

 Thus we have an Ideal highpass filter (IHPL), a 

Butterworth highpass filter, and a Gaussian High pass 

filter’ 



Sharpening Frequency Domain Filters 

 Edges and suden Gray level changes are associated 

with high frequencies. Thus sharpening images  can 

be acheived by highpass frequency domain filters. 

 The objectives of using highpass filters are the 

reverse of those for using lowpass filters.  

 For any lowpass filter Hlp(u,v) there is a highpass filter: 

Hhp(u,v) = 1- Hlp(u,v). 

 Thus we can define an Ideal Highpass filter, a 

Butterworth High frequency filter, and a Gaussian 

Highpass filter.  



Sharpening Frequency Domain Filters 

 The Ideal Highpass Filter “cutsoff” all low frequencies of the 

DFT but maintain the high ones that are within a certain 

distance from the centre of the DFT.  
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If  D(u,v)> D0
 

The IHPF filter The IHPF as an image 

In this case D0  is the cutoff frequency, and D(u,v) = [(u-M/2)2+(v- N/2)2]1/2 



IHPF pass filter – with different cutoff levels  

IHPF filtering: Cutoff frequencies at radii 15,30,80.  Ringing is visible 



The Butterworth High pass Filter 

 The Butterworth Highpass Filter (BHPF) of order n and 

with cutoff frequency at distance D0  is defined as:  
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an image 



BHPF filter – with different cutoff levels  

BHPF of order 2, Cutoff frequencies at radii of 15,30, and 80.  

The boundaries are less distorted than with the IHPF. 



The Gaussian Highpass Filters 

 The Gaussian Highpass Filter (GHPF) with cutoff 

frequency at distance D0  is defined as:  

  . 1),(
2

0
2 2/),( DvuD

evuH




The GHPF filter The GHPF as an image 



GHPF filter – with different cutoff levels  

GHPF filter : Cutoff frequencies at radii of 15,30, and 80.  

The results are smoother than those obtained by the other 2 filters 



Other filters 

 It is possible to construct Highpass filters as the 

difference of two Gaussian lowpass filters. 

 The Laplacian can be implemented in the frequency 

domain as the filter: 

                                      H(u,v) = -(u2+v2). 

 This follows from the fact that: 

 It is customary to use the centered version, i.e.  

H(u,v) = - [(u-M/2)2+(v-N/2)2]. 

 The Laplacian filtered image in the spatial domain is 

obtained by computing the inverse DFT of H(u,v)F(u,v). 
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End of Chapter 5 


