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Key Features of Chapter 5:
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A Model of Image Degredation & Restoration.
Noise Models .

Statistical Models of Spatial Noise .

Noise Models — Probability Density Functions.

Image restoration in the presesncce of Noise
Only .

Adaptive filters .



A Model of Image Degredation & Restoration

Image Degredation Is a process that operates on an ‘input” image
1(x,y) during the process of acquisition and/or transmission.

It [s assumed that it is the result of a degredation function H(u,v)
plus an additive noise N(u,v) acting on the frequency domain:.

G(u,v) =H(u,v)F(u,v) + N(u,v).
The observed degraded image g(x,y), can be modelled as

a.y) = hix y)*xy) + n(x.y),

where h(x,y), n(x,y), and g(x,y) are the inverse DFT of H(u,v),
N(u,v), and G(u,v), respectively.

The process of restoration aims to recover f(x,y) from the observed
degraded image g(x,y). Restoration requires a reallstic model of
noise to be removed first, and then filtering out H(u,v).



Noise Models

Noise In digital Images arise during

v' Aquuasition: environmental conditions (light level & sensor
temperature)

v’ anda/or transmission — interferance in the transmition channel.

To remove noise we need to understand the spatial Characteristics
of noise and its frequency characteristics (Fourier spectrum)).

Generally, noise level is assumed to be independent of position in
image and uncorrelated to pixel values, I.e. we cannot say that
noise effects some positions or pixels values more or less than
other even If this Is so visibly.

White noise refers to noise function with constant Fourier spectrum

Spatial noise Is described by the statistical behavior of the gray-
level values in the noise component of the degraded image.



Statistical Models of Spatial Noise

v Spatial noise can be modelled in terms of the statistical behavior of
the gray-level values in the noise component of the degraded image,
L.e. arandom variable with a specific probability distribution.

v’ Important examples of noise models include:

1. Gaussian Noise.
Rayleigh Noise.
Gamma Noise.
Exponential Noise.

Uniform Noise.

» G A W N

Impulse Noise (Salt & Pepper).



Noise Models — Probability Density Functions & graphs

PLzh

Gaussian : p(z) = L eew 20"

\N2mo

where z Is the gray - value , & is the mean

and o 1s the standard deviation.

Ray leigh :
p(z) = (2/b)(z-a)e * @ forz>=a
0 forz <a.
Impulse (Salt and Pepper)
P, if z=a P
p(z)=4P, if z=Db
0 otherwise 5 R

If b > a, then gray - level b appearsas a light dot (salt),
outherwisegray - level a appearsas a dark dot (Pepper).

Impulse

&1



Determining noise moaels

v’ To determine the noise model in a noisy image, one may select a
relatively small rectangular sub-image of relatively smooth
region. The histogram of the sub-image approximates the
density probability distribution of the corrupting model of noise.

v The simple image below is well-suited test pattern for illustrating
the effect of adding noise of the various models.




Addition of noise - Examples

Gaussian Ravleigh Gramma




Addition of noise - Examples

I Xpone ntial L 'niform Salt & I'lk_j'['l["&k'f I




Adding Noise with MATLAB

v MATLAB provides special instructions to add noise to an image
Imnoise (1, type, parameters)
e.g. imnoise (f, ‘gaussian’, m, var), and
imnoise (f, ‘salt & pepper’, d)

v The left-most image below has been corrupted with “Salf &
Pepper” noise with different densities.

Original Clean image Salt&pepper, d=0.05 Salt&pepper, d=0.025 10



Image restoration in the presesncce of Noise Only
v’ Here we assume that H(u,v)=1, i.e. the degredation is modelled as:
ax.y) = f(x.y) + n(x.y),
v Spatial filters have been designed to remove noise include:

1. Mean filters — Arithmetic, Geometric, Harmonic, &
Contraharmonic

2. Order Statistics Filter — Median, Max, min, Midpoint
And
3. Adaptive Filters.

v’ These filters are applied in the same way as before using a square
array neighbourhood of size 3x3, 5x5, ...elc.

v’ The resulting image approximates the perceived clean image 1(x,y).
11



Types of Mean Filters
Arithmetic Mean:

f(x, y):%Zg(x, ).

Thesum s taken over all pixels in the mask.
2. Geometric Mean:

f(x, y)= [Hg(s,t)]%

The product Is taken over all pixels in the mask.

ﬁ!il*ﬁiﬂ!. 4

PR T s T i b . = N B s T R i a Wl . = ¥ - s e

Image corrupted by Image restored with Image restored with 12

adding Gaussian noise arithmetic mean filter Geometric mean filter



Types of Mean Filters - continued

3. Harmonic Mean:
A mn
f(X’ y)_ Z 1
g(x,y)

Thesum s taken over all pixels in the mask.
Works well for salt noise removal

4. Contraharmonic Mean:

> g(x, y)*"
2.9(xy)°

Qs theorder. Positive Q eliminates pepper,
while negative Q eliminate salt.

f(x, y)=

Note that the harmonic filter is a special case of contraharmonic with Q=-1,
and contraharmonic with Q=0 is the arithmetic mean filter. 13



Effect of Mean Filters

Image (a) - Image (b)
corrupted by ~.corrupted by
pepper with s Salt with

probability 0.1 - probability 0.1

Image (a) restored with Image (b) restored with 14
Contraharmonic filter, Q=1.5 Contraharmonic filter, Q=-1.5




Effect of Contraharmonic Filters with wrong sign

Image (a) : flmage (b)
corrupted by ~__corrupted by
pepper with .Salt with

probability 0.1 -

Image (a) with application of
Contraharmonic filter, Q=-1.5 Contraharmonic filter, Q=1.5

15



Salt noise and Pepper noise Removal

L

Image
corrupted by
salt noise with
probability 0.1

Image
corrupted by
pepper noise
with
probability 0.1

Min and Max order statistics filters may be useful in removing salt noise and
pepper noise, respectively, but the result depends on the noise density.

Removing

: Removing
Pepper noise )
with Max filter S".ilt noise
with Min filter

16




Spatial Noise removing filters in MATLAB

v’ The mean as well as order statistics spatial filters can be applied using
the following MATLAB instruction:
=spfilt(c, Type, m, n, parameters),
Where Type refer to one of the filters defined earlier, and m and n
represent the filter size.

Examples
F=spfilt(c, ‘amean’, m, n) - for arithmetic's mean
F=spfilt(c, ‘gmean’, m, n) - for geometric's mean
F=spfilt(c, ‘hmean’, m, n) - for Harmonic mean
F=spfilt(c, ‘Chmean’, m, n, Q) - for contrahamonic mean
F=spfilt(c, ‘max’, m, n) - for max mxn mean filter
=spfilt(c, ‘min’, m, n) - for the min mxn filter
F=spfilt(c, ‘midpoint’, m, n) - for the midpoint mxn filter

=spfilt(c, ‘median’, m, n) - for the median mxn filter
17



v
v

Aaaptive filters

The previous filters are applied regardless of local image variation.

Adapted filters change their behaviour using local statistical
parameters in the mask region. Consequently, adaptive filters
outperform the non-aadaptive ones.

The following formula defines a simple adaptive filter:

(xy) =c(x.y) - o2x(c(x.y)- m Vo2,
where m, and o, stand for the mean and standard deviation of pixe/
values in the mask region, and o, Is the image standard deviation.

An adaptive median filter can be defined which aims to replace 1(x,y)
with the median of a neighbourhood up to a specified size as long as
the median is different from the max and min values but 1(x,y)=min or
1(x,.y)=max. Otherwise, f(x,y) Is not changed. This filter is iImplemented
using the MATLAB instruction.

aapmedian(f, Smax)
where Smax Is the maximum allowed filter size.
18



Example

Image heavily Corrupted Result of filtering with 7x7 Result of filtering with
with Salt & Pepper median filter. adaptive 7x7 median filter.

19



Summary

There are different noise models.

For good strateqy in removing noise and restoring image quality one
needs to determine noise distribution. (Check the histogram in a
reasonable size smooth region with visibly small variation in values)

Once the noise model is estimated use an appropriate filter. Histogram
In the same region indicates level of success.

V' Denoising (i.e. removing noise) often introduce other side effects.

Advanced de-noising filters are based on adaptive strategy, I.e. the
procedure tries to adapt the application of the filter as it progresses
(see the main reference book on these types of filters).

Frequency domain filters provide powerful de-noising methods.

Noise in Colour images may have different characteristics in different

colour channels, but removing noise uses the same strategy.
20



END of Chapter 6
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nage Processing

Key Features of Chapter 6:

* Colour Fundamentals.

* Colour Models .

* Pseduocolour image processing .
* Full Colour Image Processing.

* Colour Transformations.

« Sharping and Smoothing .



Introduction

Motivation to use colour:

*  Powerful descriptor that often simplifies object identification and extraction
from a scene

*  Humans can discern thousands of colour shades and intensities. compared to
about only two dozen shades of gray

Two major areas:

*  Full-colour processing: e.g. images acquired by colour TV camera or colour
scanner

*  Pseudo-colour processing: assigning a colour to a particular monochrome
ntensity or range of mntensities

Some of the gray-scale methods are directly applicable to colour images
Others require reformulation



Colour Fundamentals

FIGURE 6.1 Color
spectrum seen by
passing white
light through a
prism. (Courtesy
of the General
Electric Co..
Lamp Business
Division.)

OPTICAL PRISM

GCANMA MCRO
LRAY X
0 Lner -

}0nm - — 0001 ==~ + 100 &
» unuuv OLEY ViIsInLe nrcvnun r n-nm-co e
‘CO Iilo /

WAVELENGTM (Nanametors)

FIGURE 6.2 Wavclengths comprising the visible range of the electromagnetic spectrum.
(Courtesy of the General Electric Co., Lamp Business Division.)



Colour Fundamentals

Perception of colours by the human eye

Cones can be divided into 3 principal sensing categories: (roughly) red. green and blue
~65% are sensitive to red light, ~33% to green light and ~2% to blue (but most sensitive)

— Colours are seen as variable combinations of the primary colours: Red, Green, Blue
From CIE® (1931). wavelengths: blue = 435.8nm. green = 546.1nm. red = 700nm

445 nm 535 nm 575 nm FIGURE 6.3
Absorplion of
light by the red,
green, and blue
cones in the
human eye s d
function of
wavelengih.

Albso |1I:i|.1r| I::|||:.~iII:|I.x units )

450 500 5500 GO0 [l 00 nm

&n

Blue
Green
Yellow

Change
Hed

Bluish purple E
Blue gre

Purplish blue
Reddish orange

* CIE = Conmmussion Internationale de I'Eclairage
(the International Commission on Ilumination)

Yellowish green



Colour Fundamentals

Primary colours can be added to produce
the secondary colours of light:

* Magenta (red plus blue)

*Cyan  (green plus blue)

* Yellow (red plus green)

Mixing the three primaries in the right
intensities produce white light

Primary colours of pigment: absorb a
primary colour of light and reflects or
transmits the other two

—» magenta, cyan and yellow

YELLOW

WHITE

YELLOW

MIXTURES OF LIGHT
{ Additive primarics)

MIXTURES OF PIGMENTS

(Subtractive primaries)

PRIMARY AND SECONDARY COLORS
OF LIGHT AND FIGYEN]

a
b

FIGURE 6.4
Primary and
secondary colors
of light and
pigments.

{ Courlesy of the
General Electric
Co., Lamp
Business
Division.)



Colour Fundamentals

Characteristics of a colour:

* Brightness; embodies the achromatic notion of intensity

* Hue: attribute assoctated with the domimant wavelength m a mixture of light waves

» Saturation: refers to the relative purtty or the amount of white light mixed with a hue
(The pure spectrum colours are fully saturated: ¢.g. Pink (red and white) 15 less

saturated. degree of saturation being inversely proportional to the amount of white light
added)

Hue and Saturation together = chromaticity
= Colour may be characterized by 1ts brightness and chromaticity



Colour Fundamentals

Tristimulus values = amounts of red (X). green (Y) and blue (Z) needed to form a
particular colour. A colour can be specified by its trichromatic coefficients:

B X
T XY +Z
y = Y NB: r+y+z=1
X+Y+7
Z
2

T X+Y+2Z



Colour Fundamentals

Content:
62% green
25%red
13% blue

Another approach for specifying colours:
The CIE chromaticity diagram:

Shows colour composition as a function of x (red) e e S

and y (green) /

For any value of x and y: = (blue) 1s obtained
s z=1-(z+y)

Pure colours of the spectrum (fully saturated):
boundary

Equal fractions of the 3 coot wm:/;
primary colours (CIE 3 combum
standard for white light)

FIGURE 6.5
Chromanicin
dtagram
(Courtesy of the
General Eleciric
Co,. La
Business
D)ivisior




Colour Fundamentals

Typical range of colours (colour gamut) produced by RGB monitors:

FIGURE 6.6
Typical color
gamut of color
monitors
{triangle ) and
color printing
devices (irregular
region).

Colour gamut of today’s high-
quality colour printing devices

10



Colour Models

» Also called: colour spaces ot colour systems

» Purpose: facilitate the specification of colours in some “standard” way

+ Colour model = specification of a coordinate system and a subspace within 1t where
each colour 1s represented by a single point

Most commonly used hardware-oriented models:

* RGB (Red. Green, Blue), for colour monitors and video cameras

* CMY (Cyan, Magenta. Yellow) and CMYK (CMY+Black) for colour printing
* HSI (Hue. Saturation, Intensity)

11



Colour Models

The RGB Colour Model

* Each colour appears in its primary spectral components of Red. Green and Blue
* Model based on a Cartesian coordinate System

* Colour subspace = cube

* RGB primary values: at 3 opposite corners (+ secondary values at 3 others)

* Black at the origin. White at the opposite corner

B
FIGURE &.7
Schematic of the
0 011 RGB color cube.
Blye | %Y Cyan Points along the
' main diagonal
: have gray values,
- ' froam black at the
Gray SC(HFE? Magenta | | White arigin to white at
' ‘_-_-_-_-_-_'—""‘"—--. 1 f point (1,1, 1)
-_-_H_-_-_‘-IF-_-__‘V
1 &
Convention: all colour values normalized Black fOTyseale)  JO.L.O
. . . - Green
== unit cube and all values of R.G.B in [0.1] 7
0,00 e
?__,-’J Red Yellow
R~

12



Colour Models

Number of bits used to represent each pixel in the RGB space = pixel depth
Example: RGB image in which each of the red, green and blue images 1s a 8-bit image

= Each RGB colour pixel (1.e. triplet of values (R.G.B)) 1s said to have a depth of 24
bits (full-colour image)

Total number of colours in a 24-bit RGB image 1s: (28)3 = 16.777.276

FIGURE 6.8 RGI3
24-bit color cube.

13



Colour Models

. |

Gireen ‘ RGH

Color
:) monitor
. N

(R=0) (G =0) (B=10)

4
h

FIGURE 6.9

(a) Generaling
the RGE image of
the cross-sectional
calar plane
(127,G. B).

(b} The three
hadden surface

planes in the colar
cube of Fig, 6.8,

NB: acquiring an image = reversed process:
Using 3 filters sensitive to red. green and blue, respectively (e.g. Tri-CCD sensor)



Colour Models

2.2 XYZ (CIE)

» Official definition of the CIE XY Z standard (normalised matrix):

X ] 0.49 0.31 0.20
Y 0.17697 0.81240 0.01063
0.00 0.01 0.99

= 0.17697

» Commonly used form: w/o leading fraction => RGB=(1.1.1) =*Y=1

R
G
B

15



Colour Models

2.2 The CMY and CMYK Colour Models

CMY: Cyan, Magenta, Yellow (secondary colours of light, or primary colours of

pigments)

* CMY data input needed by most devices that deposit coloured pigments on paper,
such as colour printers and copiers

* or RGB to CMY conversion:

C 1 R
Mi=111-1G
Y 1 B

(assuming normalized colour values)

Equal amounts of cyan. magenta and yellow == black, but muddy-looking in practice
=> To produce true black (predominant colour in printing) a 4® colour. black. is added
== CMYK model (CMY + Black)

16



Colour Models

2.3 The HSI Colour Model

RGB and CMY models: straightforward + ideally suited for hardware implementations
+ RGB system matches nicely the human eye perceptive abilities

But, RGB and CMY not well suited for describing colours in terms practical for human
interpretation

Human view of a colour object described by Hue, Saturation and Brightness (or Intensity)
* Hue: describes a pure colour (pure yellow. orange or red)

* Saturation: gives a measure of the degree to which a pure colour is diluted by white light
* Brightness: subjective descriptor practically impossible to measure. Embodies the
achromatic notion of intensity => intensity (gray level). measurable

=> HSI (Hue, Saturation, Intensity) colour model

(or HSL: Lightness. HSB: Brightness. HSV: Value)

17



Colour Models

2.3 The HSI Colour Model

Intensity is along the line joining white and black in the RGB cube
— To determine the intensity component of any colour point: pass a plane

perpendicular to the intensity axis and containing the colour point. Intersection of the
plane with the axis is the normalized intensity value

—> Saturation (purity) of a colour increases as a function of distance from the intensity

axis (on the axis. saturation = 0. gray points)

Intensity axis

Blue &

White

|
b
1 ‘\-\.
|t ,
| M:lp'-ul.l\'\
. H, N
Cyan ] Yellow

Y
A,
‘ *,

s Red

o p
FGreen
' rd

. -~
“roen
' A

A |
\")I Red

ahb

FIGURE &.12
Conceptual
relationships
between the RGB
and HSI color
models.
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Colour Models

Colour planes. perpendicular to the intensity axis:

Lireen

Blue

a
bicd

Grean Yellow
o 7
TENVAN
.-"'I '-.. _.-"'II ‘v._-
VA \
Cyan ﬂ&-}' Red
' R A
l“l\. ¢ l'\ .I"I
N N/
" W'
Blus Telagenia
¥ el {iresn — . Yellow
q Gireen T )
\\. ..l'.a.“" ./
L AN / S0
AN / | Al
Pl Red 'j.'an,,") 5, -,\‘t":llnw L :v:'mcl | 1Red
L
/ AN \ /
i A '*-... ",
I d = e S
Magenta Blue Magenta  Red Bl ———" Vagenta

FIGURE £.13 Hue: and saturation in the H51 color model. The dot is an arbitrary color
podnt, The angle from the red axis gives the hue, and rhe length of the vector is the
saturation. The intensity of all colors in any of these plancs is given by the position of
the plane on the vertical intensity axis.

19



Colour Models

The HSI Colour Models based on:

Triangular colour planes

Circular colour planes

)= Q78

n

b

FIGURE 6.14 The
HS1 color model
based on

(a) triangular and
{b) circular color
planes. The
triangles and
circles wre
perpendicular to
the vertical
intensity axis

20



Colour Models

Conversion from RGB to HSI

0 tB<G

360—0 ifB>G then normalise H

Given an RGB pixel: [ = {

with 0 = cos™ % [(B -G+ (R~ B)]
(R-G)%+ (R - B)(G - B)"*

3
(R+G + B)

Saturation: S = 1 — min(R. G, B)]

. 1
Intensity: [ = E(R + G+ B) NB: RGB values normalised to [0,1].
' Theta measured w.r.t. red axis of the HSI space

21



Colour Models

Conversion from HSI to RGB
Three sectors of interest:

* RG sector (0° < H < 120°):

R=T1|1+

B=1I(1-8)

Scos H
cos(60° — H)

G=3I-(R+B)

* GB sector (120° < H < 240°):

H=H-120"

R=1I(1-5)

H
G114 S cos

cos(60° — H)
B =3I - (R+G)

22



Colour Models

Conversion from HSI to RGB

* BR sector (240° <H <360°): H = H —240°

G=1(1-15)
Scos H

B=1]|1
[ + cos(60° — H)

R=3I—-(G+B)

* Then normalise H

23



Colour Models

Conversion from HSI to RGB

Hue Saturation Intensity

abc

FIGURE 6.15 HSI components of the image in Fig. 68.(a) Hue, (b) satuation. and (] intensity images.

RGB 24-bit colour cube

Corresponding HSI values

24



Colour Models

Manipulation of HST images:

Primary and secondary H
RGB colours

a b

cd

FIGURE 6.16 (a1 RGE image and the components of its corresponding HST image:
(b} hue, (¢ saturation, and (d) intensity.

25



Colour Models

Modified HST image

EHH
H
SEUI

¢

RGB
image

FIGURE 6.16 (a) RGP image and the components of ils corresponding HST image: I
() hue, (<) saturation, and (d) intensity.

Original image

ab

cod

FIGURE 617 (a)—(c) Modified HS1 component images. {d) Resulting ROGE image.
(mee Fig ali for the original HS1 images



Colour Models
2.4 The L*a*b* model

Example of Colour Management System (CMS):
CIE L *a*b* model. or CTELAB:
Y
L* = 116;‘1( ) — 16

=i ) -(s;)
=) )

- N g > 0.008856
Where:  h(g) = { 7.787¢+16/116 ¢ < 0.008856

Xy Yy and Zyy are reference white tristimulus

27



Colour Models

The L*a*b* colour space 1s:

Colorimetric (colours perceived as matching are encoded identically)
Perceptually uniform (colour differences among various hues are percetved
uniformly)

Device independent

Other characteristics:

Not a directly displayable format

[ts gamut encompasses the entire visible spectrum

Can represent accurately the colours of any display. print, or input device
Like HSI. excellent decoupler of intensity (represented by lightness L*) and
colour (™ for red minus green, b* for green minus blue)

28



Pseudo-Color Image Processing

s Assign colors to gray values based on a

specif|

ed criterion

s For human visualization and interpretation
of gray-scale events

» Intensity slicing
s Gray level to color transformations

29



Pseudo-Color Image Processing. Intensity Slicing

= 3-D view of intensity image

flx.y)
Giray-level axis

(White) L. = 1

Color 1

Sliciﬂg plane

Color 2

------
- l..h‘

- -
FFFFFFFF

Image plane

30



Pseudo-Color Image Processing: Intensity Slicing

s Alternative representation of intensity slicing

'

Color

() [
Gray levels

31



Pseudo-Color Image Processing: Intensity Slicing

= More slicing plane, more colors

4

g

Color

0 [
Gray levels

32



Pseudo-Color Image Processing.: Applicationl

8 color regions

Radiation test pattern

* See the gradual gray-level changes

33



Pseudo-Color Image Processing.: Application?

X-ray image of a weld

34



Pseudo-Color Image Processing. Application3




Gray Level to Color Transformation

s Intensity slicing: piecewise linear

transformation

L

-

= General Gray level to color transformation

L-14

Red

36



Gray Level to Color Transformation

Red
transformation

Green
transformation

f(x )T folx.y)

Blue
transformation

fp(x.y)

FIGURE 6.23 Functional block diagram for pseudocolor image processing. fx. f;.and f
are fed into the corresponding red. green, and blue inputs of an RGB color monitor.
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Gray Level to Color Transformation

38



Combine Several Monochrome Images

Example: multi-spectral images

f1(x,y) ‘:>

fax.y) S

frlx )T

Transformation T,

8(x.y)

Transformation 7,

g(x.y)

Transformation T,

hg(x, y)

Additional

| g (x. »
processing IG(x. )

hg(x, y)

39



Combine Several Monochrome Images

R
Near
Infrared
B (sensitive

to biomass)

40



Basics of Full-Color Image Processing

2 major categories:

*  Processing of each component image individually
=> composite processed colour image

+  Work with colour pixels (vectors) directly

Cr R
Vector 1n RGB colour space: c=lco | =] G
Cp | I B |
i Cﬂ(m:y) h - R(-’E,'y
clz,y) = | calz,y) | = | Glzy
i 63(33,1}) } i B(.Tl,y




Basics of Full-Color Image Processing

Per-colour-component and vector-based processing equivalent iff:
1. The process 1s applicable to both vectors and scalars

2. The operation on each component of a vector 1s independent of the other
components

. ah

FIGURE 6.29
— apatial masks for
= gray-scale and
(x.7) i RGR color

4 (x, ¥) P IMaAZEs.
Spatial mask — Spatial mask —

Gray-scale image RGH color image =

42



Basics of Full-Color Image Processing

NB: Context of a singl/e colour model (no conversion between models)

5.1 Formulation

g(z,y) =T|f(z,y)
(processed) colour / /

output image Colour input image

Operator defined over a
spatial neighbourhood of
point (x,v)
/ Set of transformation of colour mapping functions
Basic transformations: S = Li(T1,72,--,Tn) 1=1,2,...,m

e.2. RGB or HSL: n=3. CMYK: n=4

43



Basics of Full-Color Image Processing

FIGURE 6.30 A full-color image and its various color-space components,
Interactive.)

Full onton

&

44



Basics of Full-Color Image Processing

Example: modify the intensity of the full-colour image using: ¢(z,y) = kf(z,y)
0<k<l1

ImHSL S3=kr3 $1 =11 and $2 =T
InRGB: s;=kr; i=123
mCMY: s;=kr;+(1—-k) i=1,2,3

a b
cde
FIGURE 6.31
Adjusting the
intensity of an
image using color
transformations
(2) Ongmnal
image. (b) Result
of decreasing its
intensity by 300
(1e,, letting
k=07
(¢)-(¢) The

required RGB,
CMY. and HSI
Lransformation
functions.

(Original image ! ! '

courtesy of A } il |

MedDat 2 -

Interactive.) ‘——r—f A/ - </ — ' // ] .2 i
. / y A% I L) 1 /. /



Basics of Full-Color Image Processing

Colour complements

Hues directly opposite one another on the colour circle = complements

Complements are analogous to gray-scale negatives (section 3.2.1)
Useful for enhancing detail embedded in dark regions

Magenta FIGURE 6.32
Complements on
the color cirele.

Cyan Red

46



Basics of Full-Color Image Processing

Colour complements

ahb

cd

FIGURE 6.33
Color
complement
transformations.
{(a) Original
image

(b) Complement
transformation
functions

(¢) Complement
of {a) based on

the RGEB mapping

functions (d) An
approximation
of the RGB
complement
using HSI
rransformarions
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Basics of Full-Color Image Processing

Colour slicing

Highlighting a specific range of colours to separate objects from surroundings
«  Display the colour of interest, or:
*  Use the region defined by colours as a mask

If colours of interest enclosed by a cube (or hypercube) of width W and centered at a
prototypical (e.g. average) colours with components (a,. a,..... a ), then:

' gl W
53-:{ 0.5 if [Irj —a] > Q]any 1<j<n i=19  m

. e
r;  otherwise

=> Highlight the colours around the prototype by forcing all other colours to the
midpoint of the reference colour space (¢.g. middle gray in RGB: (0.5.0.5.0.5))
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Basics of Full-Color Image Processing

Colour complements

ahb

cd

FIGURE 6.33
Color
complement
transformations.
(a) Original
image

(b} Complement
transformation
functions

(¢) Complement
of (a) based on
the RGE mapping
lunctions (Jd) An
approximation
of the RGB
complement
using HSI
rransformations
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Basics of Full-Color Image Processing

Colour slicing

Highlighting a specific range of colours to separate objects from surroundings
»  Display the colour of interest. or:
o Use the region defined by colours as a mask

If colours of interest enclosed by a cube (or hypercube) of width W and centered at a
prototypical (e.g. average) colours with components (a,. a,...., a ), then:

: W
G — { 0.5 if [Irj —a] > ?]any 1<j<n =19
] .

r;  otherwise

=> Highlight the colours around the prototype by forcing all other colours to the
midpoint of the reference colour space (¢.g. middle gray in RGB: (0.5.0.5.0.5))
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Basics of Full-Color Image Processing

Colour slicing

ab

FIGURE 6.34 Color-slicing transformations that detect (a) reds within an RGB cube of
width W = (.2549 centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB
sphere of radius (.1765 centered at the same point. Pixels outside the cube and sphere
were replaced by color (0.5.0.5,0.5).
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Basics of Full-Color Image Processing
Tone and Colour Corrections

Effectiveness of these transformations judged ultimately in print

But developed. refined and evaluated on monitors

= Need to maintain a high degree of colour consistency between monitors used and
eventual output devices

= Device-independent colour model, relating the colour gamuts of the monitors
and output devices

52



Basics of Full-Color Image Processing

1. Tonal transformations

Boosting contrast
Typical transformations for correcting

three common tonal imbalances:

Cf. power-law
transformations

Dark L} I

FIGURE 6.35 Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red,
green, and blue components equally does not always alter the image hues significantly,
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Basics of Full-Color Image Processing
2. Colour balancing

* Goal: move the white point of a given image closer to pure white
(R=G=B)

» Example of strongly coloured illuminant: mcandescent imdoor lighting
(=>yellow or orange hue)

+ NB: using white may not always be a good idea...
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Basics of Full-Color Image Processing

2. Colour balancing

Analyze (spectrometer) a known
colour in an image

When white areas: accurate visual
assessments are possible
Other example: skin tones

FIGURE 6.36 Color balancing corrections for CMYK color images.
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Basics of Full-Color Image Processing

Histogram Processing

Example: Histogram Equalisation in the HSI colour space

ab
cd

FIGURE 6.37
Histogram
equalization
(followed by
saturation
adjustment) in the
HSI color space.

Hinto green before provessieg
{medien = (36|

™ Canwalas 2 R E Wande
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Basics of Full-Color Image Processing

Smoothing and Sharpening

Colour Image Smoothing
Sgy - Set of coordinates of a neighbourhood centered at (x.y) in an RGB image

Average of the RGB component vectors in this neighbourhood:

1
] 1 1
ﬂ(muy)zf Z c(s,t) = K
K

Can be carried out on a per-colour-plane basis (same as averaging using RGB vectors)

Y



Basics of Full-Color Image Processing

Colour Image Smoothing: Example

ah
cd

FIGURE 6.38

{¢) RGB imuge.
{b) Red '
component image.
{¢) Green compo-
nent. (d) Blue
component,
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Basics of Full-Color Image Processing

Colour Image Smoothing: Example

abcg

FIGURE 6.39 1ISI components of the RGE color image in Fig. 6.38(a). (a) Hue. (b) Saturation. (¢) Intensity.
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Basics of Full-Color Image Processing

Colour Image Smoothing: Example

Smoothing each RGB
componentimage  Smoothing the I of HSI Difference

abec

FIGURE 6.40 Image smoothing with a 5 X 5 averaging mask. (a) Result of processing each RGB
componenl image. (b) Resull of processing the intensity componenl of the HST image and converting Lo
RGB. (¢) Difference between the two results.
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Basics of Full-Color Image Processing

Colour Image Smoothing: Example

Smoothing each RGB
componentimage ~ Smoothing the I of HSI Difference

abc

FIGURE 6.40 Image smoothing with a 5 X S averaging mask. (a) Result of processing each RGB
componen! image. (b) Result of processing (he inlensily component of the HSI image and converting Lo
RGR. (¢) Difference between the two results.
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Basics of Full-Color Image Processing

Colour Image Sharpening ) _
, | VR(z,y)
In RGB. the Laplacian of vector ¢ is: 72 e(z,y)] = | V2G(z,y)

| V2B(z,y) |

=> Can be computed on each component image separately

abe

FIGURE 6.41 Imuge sharpening with the Laplacian. (a) Result of processing cach RGB channcl, (b) Result of
processing the HST intensily component und converting lo RGB. (¢) Dilference between the two results,
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Basics of Full-Color Image Processing

Original image
N ‘
v \ ’D “

Image Segmentation Based on Colour

Segmentation in HSI Colour Space

Typically: segmentation on

Hue image »

Saturation g ﬁ\  Intensity
" o )
Example: R

Binary saturation mask ﬁ‘f

Mask * Hue imag:
(threshold=10% of max value) ‘ ask * Huemag
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END of Chapter 6
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Fourier Analysis — Shortcomings.

Wavelet Transforms.

CWT and DWT.

One Dimension (1D) DWT.
Multi-Resolution 2D Wavelet Transforms.
Different Decomposition Schemes.
Statistical Properties of Wavelet subbands.
Applications of Wavelet Transforms.
DWT Filters Types in Matlab.
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7.1 Fourier Analysis — Shortcomings

Fourier analysis of the two signals, below, give the same answer

Thus FT does not provide spatial support, i.e. cannot provide
frequency and time/space information simultaneously

15

0.5

0.5

-15

f(x) = concatenation of cos x,cos 2x, & cos 3x
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\

A A AN
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g(x) =(cos x +cos 2x +cos 3x)/3




7.2 Short-Time Fourier Transform (STFT)

Truncated Sine

To overcome the above
problem, STFT uses the i

Fourier transform on : \/ ;
small window.

» It maps a signal into a two-dimensional function of time and
frequency, I.e. provides some information about both when
and at what frequencies a signal event occurs.

» The drawback is that once you choose a particular size for
the time window, it remains the same for all frequencies.
Many signals require a more flexible approach -- one where
we can vary the window size.

» Wavelet Transforms represents the next logical step: a
windowing technique with variable-sized regions. 4



>

7.3 Wavelet Transforms

Wavelet analysis allows the use of long time intervals
where we want more precise low-frequency information,
and shorter regions where we want high-frequency
iInformation.

A wavelet (i.e. small wave) is a mathematical function
used to analyze a continuous-time signal into different
frequency components and study each component with a
resolution that matches its scale.

A wavelet transform is the representation of a function by
wavelets. The wavelets are scaled and translated copies
of a finite-length or fast-decaying oscillating waveform
v(t), known as the mother wavelet.

There are many wavelet filters to choose from.



7.3 Wavelet Transforms

WT provides powerful insight into an image’s spatial and frequency
characteristics. However, The FT exposes only an image’s frequency
attributes.

WT became the preferred image transform for a various reasons:
— Localization.
— Lossless Transform.

— Multi-resolution Characteristics.

Some WT applications for a variety of image processing/analysis:

» Feature preserving of image/video quantization for compression.

Content based video retrieval.

Feature extraction for face detection.

Image watermarking and steganography (i.e. information security).

Object authentication\recognition.



7.4 CWT and DWT

» The continuous wavelet transform (CWT) of f(t) Is
defined as the sum over all time multiplied by a scaled,
shifted versions of the wavelet function y(t) :

C(scale, position) = | f(x) w(s, p, t) dt

where wy(s,p,t) Is the scaled and mother wavelet. The
best choice for the scale and position Is to use multiple
powers of 2.

» Computing CWT is rather inefficient. The Discrete
wavelet transform (DWT) however provides a compact
representation of a signal’s frequency commponents
with strong spatial support

v



7.5 One Dimension (1D) DWT

>

>

The Wavelet transform is a short time anlysis tool of finite energy
quasi-stationary signals at multi-resolutions.

The Discrete wavelet transform (DWT) provide a compact
representation of a signal’s frequency commponents with strong spatial
support.

DWT decomposes a signal into frequency subbands at different scales
from which it can be perfectly recontructed.

For example one diemension wavelet transform is shown below

L}
L1} L2 |
lowpass i lowpass ]
Signal S ! !
i i
1 1
A —(v2) H1 | He |
highpass ! highpass !
1

1
T ] ™evel CTT 1 2¥evell



7.5.1 Example: The Haar Wavelet Filter

The Haar wavelet

> The Haar waveletis a
discontinuous, and 047
resembles a step function.

-0.4

» It 1s a crude version of the —
Truncated cosine.

» It can be implemented using a simple filter:

If X={X{,X5,X3,X4 ;X5 ,Xg ,X7 ,Xg } IS @ time-signal of length 8,
then the Haar wavelet decomposes X into an approximation
subband containing the Low frequencies and a detaill
subband containing the high frequencies:

LOW= {X,+X;, Xs+Xg , Xg+Xs , Xg+X; HN2

High= {X,-X;, X,-X3 , Xg-Xs5 ; Xg-X7 }/N2 .



7.6 Multi-Resolution 2D Wavelet Transforms

A Haar wavelet decompose images first on the rows and then on the
columns resulting in 4 subbands, the LL-subband which an approximation of
the original image while the other subbands contain the missing details

The LL-subband output from any stage can be decomposed further.

. e B \ ~’ i ll

Original
Image

1 stage Transformation

After 2 stages

10



7.6 Multi-Resolution 2D Wavelet Transforms

Row-wise

Image

G
lowpass

H

highpass

Column-wise

SECE
O

Row-wise

Column-wise

G

G

lowpass

H

highpass L

ol

P PP S

LL2

LH2

HL2

HH2
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7.6 Multi-Resolution 2D Wavelet Transforms

LL sub-band:

LH sub-band:

HL sub-band:

HH sub-band:

Representing the low frequencies in both horizontal and vertical
directions. This sub-band is also called the approximation or the

scaled sub-band.

Representing the high frequencies in the horizontal direction and
the low frequencies in the vertical one. Hence, this sub-band holds

information about horizontal features (e.g. edges) in the image.

Representing the high frequencies in the vertical direction and the
low frequencies in the horizontal one. It holds information about

vertical features in the image.

Representing the highest frequencies in the image, and holds

information about diagonal features in the image.

12



7.6. Multi-Resolution Wavelet Transforms - Examplel

LL HL
LL HL HL
LH HH
LH HH LH HH
{a) Decomposition stage 1 (b) Decomposition stage 2

(a) Original (b) Stage 1 (c) Stage 2 (d) Stage 3

13



7.6. Multi-Resolution Wavelet Transforms — Example2

» res LLE

A B C D E Figure 3.7 Example of applying different wavelet filters (db1, db2, db3 and
Meyer) for B, C, D and E respectively, where (G, H, | and J shows the
histogram for the corresponding LL2 sub-bands.

14



7.7 Different Decomposition Schemes

>

The previous 2 decomposition scheme is known as
the Pyrimad scheme, whereby at successive stages
only the LL subband is wavelet transformed.

Other decomposition schemes include:

» The standard scheme — At every stage all the
Image Is wavelet transformd

» The wavelet packet— After stage 1, a non-LL
subband is transformed only If it satisfied
certain condition.

15



7.8. Statistical Properties of Wavelet subbands

LL subband
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The distribution of the LL-subband approximatee that of the original but all non-

LH subband
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LL subbands have a Laplacian distribution. This remains valid at all depthsgg




7.9. Applications of Wavelet Transforms

» The list of applications is growing fast. These include:

>

>

>

>

>

Image and video Compression
Feature detection and recognition
Image denoising

Face Recognition

Signal interpulation

» Most applications benefit from the statistical propererty
of the non-LL subbands (7he /aplacian distribution of
the wavelet coefficients in these subbanas).

17



7.9.1 Wavelet-based Feature Detection

> Non-LL subbands of a wavelet decomposed image contains high
frequencies (i.e. image features) which are highlighted. These
significant coefficients are the furthest away from the mean.

> Thresholding reveals the main features.

o Vertical features

Horizontal features

18



7.9.2 Image and Video Compression

» Compression is done in 4 steps:

1. Transform into frequency domain (Fourier or Wavelet)
the image to the required depth

2. Quantise each subband according to the required ratio

3. Create a code Entropy-based code book - the more
frequent quantised coefficients have shorter
representation than the others.

4. Encode the coefficients

» Fourier based compression suffer from blocking effect at
high compression rate.

» JPEQ2000 uses wavelet transforms
19



7.9.3. Wavelet-based Video compression schemes

L’ & . '
o L
5 ) ¢ g
’ 4 b i
: % 3 '
; d & . 2o 8
¥

A Region
- of Interest
(ROI)
scheme

preserving
(FP) sceme

In the ROI scheme, the non-LL coefficients are not calculated outside the region.

For FP, significant LL-coefficients are quantised finely at the expense of oth&rs.



7.9.4. Wavelet-based Face Identification

Enrolment Process

Class 1 Class 2 Class n
Training
Images _
(T,)
TU l TZI TM
l 22 l n2 .
DWT on i
cropped
faces images
Facial features q LL ’ 1L |
Kt rs| =4
|
e v
Identification Process s .
Test ¢
Image DWT The match score for class i is:
(m) — = |5 S, =min (S.4,5,2:S,3 +ons Sym): fOri=1...n

Face image of unknown subject
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7.10 Haar Wavelet —in MATLAB

Fil= Edit Text LCell Toolz Debug | Dezktop Window Help ™

ﬂ
X

=

H| =@ | &|éf£|BFE - ~

R

o m -] m b MR EJ

clear all

c=imreadl ! Irnage b mp ' ] ;

imshow (=) !

f=c:

[T n]==i=s= (]

k=n/=z: EWavelet Cranforim [(rows)

for i=1:1:tm

for J=1:1:k

f(i,J1= cli,a*])+c(i,=%]1-1):
f(i,J+k)=cii,=*J)—-c(i,=2%]3—1]):

=1cdd
o=
k=m/2Z: EWavelet Cranform [(Ccoliumns)
for jJj=1l:1:n
for i=1:1:k
i, 3)1= uinta8i((£f(2*%i,J1+L£(2¥i-1,311.2):
cli+k,J1=uintS((£(2¥1i,3)1—L£(2*¥i-1,311.21:
=1l
=1l
figure;: imshowi(c)

4] | |
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7.11 DWT Types in Matlab

e Wavelet wlamily whname
| Haar "haar' "haar'
| Daubechies "db” ‘dba', dba’, .., 'db4b’
‘| Coaflets "coif! 'codf1’, "coif2’, .., "coifh'
Symlets ‘sym’ ‘sym2’', "sym3', ..., 'sym45"
‘| Discrete Meyer ‘dmey ‘dmey "
' Biorthogonal ‘bior' ‘olor1.1°, 'bior1.3°, 'biort.5°, 'Dior2.2’,
‘bior2.4', 'bior2.6', 'biorz.a8’, 'bior3.1',
'‘Bior3.3', "biord.5', 'bior3. 7', 'bior3.9’,
‘blord.4' "biors.5', 'biors.8'
peverse 'rhig’ ‘rbiot.1', 'rbiol.3", "rbiol.5', 'rbin2. 2",
Biorthogonal "rbilozZ.4', 'rbio2.8°, ‘rbio2.8°, 'rbin3. 1",
¥ ‘rbiod.3", 'rbied.5", 'rbinl.?’, 'rbic3.9’,
. ‘rbiod. 4" 'rbios.5', 'rbiog.B°




7.11 DWT Functions in Matlab

Analysis-Decomposition Functions Decomposition Structure Utilities
Function Name | Purpose Function Name | Purpose
dwt2 Single-level decomposition detcoef? Extraction of detail coefficients
wavedec2 Decomposition appcoef? Extraction of approximation coefficients
waxlev Maximum wavelet decomposition level upwlev? Recomposition of decomposition structure
Synthesis-Reconstruction Functions De-Noising and Compression
Function Name | Purpose Function Name | Purpose
idwt2 Single-level reconstruction ddencmp Provide default values for de-noising and compression
waverscl Full reconstruction whbmpen Penalized threshold for wavelet 1-D or 2-D de-noising
wrcoeld Selective reconstruction wdchm2 Thresholds for wavelet 2-D using Birgé-Massart strateqy
upcoefl Single reconstruction wdencmp Wavelet de-naising and compression
wthrmngr Threshold settings manager
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END of Chapter 7
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O pTession

Key Features of Chapter 8:
« Redundancy in Images.
1. Coding Redundancy.
2. Spatial and Temporal Redundancy.
3. Irrelevant Information.
 Measuring Image Information.
* Fidelity Criteria.
 Image Compression Models.
 Image Formats and Compression Standards
« Compression Methods: Huffman Coding.



Introduction

* Everyday an enormous amount of information s stored,
processed, and transmitted

1007

807

&0

* Financial data s
* Reports “1
* Inventory ’
* Cable TV

Online Ordering and tracking




Introduction

Because much of this mformation 1s graphical or pictorial in nature, the
storage and communications requirements are immense.

Image compression addresses the problem of reducing the amount of data
requirements to represent a digital image.

Image Compression is becoming an enabling technology: HDTV.

Also it plays an important role in Video Conferencing, remote sensing
satellite TV, FAX, document and medical imaging.

o



Introduction

The size of typical still image (1200x1600)

1200 x1600 x 3byte = 5760000byre
=5,760Kbyte = 5.76 Mbyte

The size of two hours standard television (720x480)
Movies
pixels _ bytes

x (760 x480) X 3—
sec frame  pixel

frame

30- =31.104.000byfes / sec

bytes < (60 60) sec

sec hour
= 224GByte.

31,104,000 x x 2hours = 2.24x10" bytes




Introduction

+ We want to remove redundancy from the data

v Mathematically

Statistically
* Uncorrelated data

2D array
Of pixels

N Transformation




Introduction

The term data compression refers to the process of reducing the
amount of data required to represent a given quantity of imformation

Data # Information

Various amount of data can be used to represent the same mformation

Data might contamn elements that provide no relevant miormation :
data redundancy

Data redundancy is a central issue m fmage compression. It 15 not an
abstract concept but mathematically quantifiable entity



Redundancy in Images

Data, Information, and Redundancy

1s used to represent information

in data representation of an
mformation provides no relevant mnformation or
repeats a stated information

o Letnl, and n2 are data represents the same
nformation. Then, the relative data redundancy R

of the nl 1s defined as
R=1-1/C where C=nl/n2



Redundancy in Images

+ Let n,and n, denote the number of mformation carrying units i two
data sets that represent the same information

v The relative redundancy Rpis define as:

where Cp, commonly called the compression ratio, 13

ny
CR — —
n,



Redundancy in Images

If Iy = ﬂ_g__ C_Ezf and _Eﬂzﬂ = Edﬂﬂd&ﬂi:}"
If n;, >>n, Cp—> 0 and Rp—> 1 e===p high redundancy
If n; << n, Cr— 0 and Rp»> —oCe===p undesirable

A compression ration of 10 (10:1) means that the first data set has 10
mformation carrying units (say, bits) for every 1 unit in the second
(compressed) data set.

+ InImage compression, 3 basic redundancy can be identified
v Coding Redundancy
v Interpxel Redundancy
v Psychovisual Redundancy

10



Redundancy in Images

« Redundancy 1n Digital Images

— Coding redundancy
usually appear as results of the uniform
representation of each pixel

— Spatial/Temopral redundancy
because the adjacent pixels tend to have
similarity 1n practical.

— Irrelevant Information

Image contain information which are ignored
by the human visual system.

11



Redundancy in Images

« Redundancy mn Digital Images

— Coding redundancy
usually appear as results of the uniform
representation of each pixel

— Spatial/Temopral redundancy
because the adjacent pixels tend to have
stmilarity 1n practical.

— Irrelevant Information

Image contain mformation which are ignored
by the human visual system.

12



Redundancy in Images

Coding Redundancy ~ Spatial Redundancy ~ Irrelevant Information

13



Coding Redundancy

Assume the discrete random variable for 1y 1n the interval
10,1] that represent the gray levels. Each r, occurs with
probability p,

If the number of bits used to represent each value of r; by
I(r;) then

b=

-1

Lm'g = f(;‘k )p('rﬁr)

0

=
il

The average code bits assigned to the gray level values.

The length of the code should be mverse proportional to
1ts probability (occurrence).

14



Coding Redundancy

Assume the discrete random variable for 1y 1n the interval
10,1] that represent the gray levels. Each r, occurs with
probability p,

If the number of bits used to represent each value of r; by
I(r;) then

b=

-1

Lm'g = f(;‘k )p('rﬁr)

0

=
il

The average code bits assigned to the gray level values.

The length of the code should be mverse proportional to
1ts probability (occurrence).

15



Coding Redundancy

Examples of variable length encoding

I} pAry)  Codel  [i(r)  Code2  Ip(ry)
ryy = 81 025 01010111 \ 01 2
Mg = 128 047 10000000 \ I |
rigs = 186 0.25 11000100 \ 000 3
rfor k#87, 128,186,255 0 — 3 — 0

16



Coding Redundancy

* Recall from the histogram calculations

h(r,) _n,

I 4

where p(r;)1s the probability of a pixel to have a certain
value r,

p(r) =

[ the number of bits used to represent r,1s /(). then

L, = Y 16)(p(r)

17



Coding Redundancy

f pdr) Code 1 hire) Code 2 bslri)
Fa= 11 149 LLLH 3 11 2
) ) =17 0.25 001 3 01 2
« Example: A R R 0
= fy = 3.:"? (16 i1 3 ] A
r,o= 47 0.1% 100 3 (M) 4
= SI.'".l' LS 1411 1 LELY 4
] re = 67 (i LA i EEELE i
r. = | i 111 i LELELER s
—Z [(r.)(p(r)

E=()
= 2(019)+2(0.25)+3(0.16) +... + 6(0.02)
= 2.7 bits

b | e

C,=>-=L11

= 1—i =0.099

R
P



Coding Redundancy

Variable-Length
Coding

fi Fdni Cuele | Filri Code 2 Felri
iy = i} 1 (K 1 i a
=177 25 Ll 3 il )
=27 (1] | {1 1 1] 3
Fn= 3T i, i an 3 L] 3
=T (1AL i 1 K| 4
Fy 5T il i [1]] i (KN} 4
ra = 67 03 10 k! (K| i
Fam= o ini i [CLEA L i
Pre) Idry)
025 ¥
fri f
=
7 = y
-
L; 'H. ‘ ll
P.r[rl;:' - -r_v.l:.l"]
x5 3
-
. 1
I-—._‘_‘_..
LI i
0 1/7 2N an i in &7 i
Ty

Crraphic
representation of
the: Tundamental
basis of data
COMpression
through varnable-
length coding.
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Spatial/ Temopral redundancy

» Internal Correlation between the pixel result from
— Respective Autocorrelation
— Structural Relationship

— Geometric Relation ship

o The value of a pixel can be reasonably predicted
from the values of 1its neighbors.

* To reduce the inter-pixel redundancies in an image
the 2D array 1s transformed (mapped) mto more
efficient format (Frequency Domain etc.)

20



Spatial/ Temopral redundancy

Here the two pictures have
Approximately the same
Histogram.

We must exploit Pixel
Dependencies.

Each pixel can be estimated

Fromits neighbors.

21



Spatial/ Temopral redundancy

Example of Inter-pixel
Redundancy removal

‘ ANcA W ' ‘ AN 2 l ANTA AN

m | IC
1C0A4

: ‘ g IC

q AaA W l ‘ ANl 2 l AlTL AW

o SN
1C24
‘ e
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Psycho-visual Redundancy

Irrelevant information and Psycho-Visual
Redundancy

» The brightness of a region depend on other factors
that the light reflection

» The percerved intensity of the eye 1s limited an non
linear

» (Certain mmformation has less relative importance that
other information in normal visual processing

* In general, observer searches for distinguishing
features such as edges and textural regions.

23



Psycho-visual Redundancy

The human visual system is more
sensitive to edges

Middle Picture:

Uniform quantization from 256 to
16 gray levels

CR= 2

Right picture:

Improved gray level quantization
(IGS)

CR= 2

24



Measuring Information

» A random even E that occurs with

probability P(E) 15 said to contain I(E)

mformation where I(E) 1s defined as

I(E) = log(1/P(E)) = -log(P(E))

 P(E) = I contain no informatio:

1

o P(E)= "2 requires one bit of 1n:

‘ormation.

25



Measuring Information

» For a source of events a, a,,a,, .., a, with
associated probabulity P(a,), P(a,), P(a,), .., P(a,).

o The average information per source (entropy) 1s
k
H=-% P(a,)log(P(a,)
j=0

For image, we use the normalized histogram to generate the
source probability, which leas to the entropy

H ==Y p,()log(p, (1)
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Fidelity Criteria

The error between two functions 1s given by:

e(x.y) = f(x.9) - f(x.)

So, the total error between the two images 1s
M-1N-]

N Y [f(y) - f(xp)]

x=0 y=0

The root-mean-square error averaged over the whole image is

€oms = ﬁ \/[E(I: J") —f(l', .}!)]2

27



Fidelity Criteria

v A closely related objective fidelity criterion is the mean
square signal to noise ratio of the compressed-
decompressed image

SNR, = ———2=

5 M-1NA

Y Y [ 5)- fe )]

x=0 y=0

28



Rating scale of the
Television
Allocations Study
Organization.
(Frendendall and
Behrend. )

Fidelity Criteria

Value  Rating Description

l Excellent An image of extremely high quality. as good as you
could desire.

2 Fine An image of high quality, providing enjoyable
viewing. Interference is not objectionable.

3 Passable An image of acceptable quality. Interference is not
objectionable,

4 Marginal An image of poor quality; you wish you could
improve it. Interference is somewhat objectionable.

) Inferior A very poor image, but you could watch it.
Objectionable interference is definitely present,

6 Unusable Animage so bad that you could not watch it.

29



Fidelity Criteria

Three approximations of the same image

30



Compression Standards

Image Compression
Standards, Formats, and Containers

Still Image Video
| Dv
| | H.261
Binary Continuous Tone H.262
CCITT Group 3 JFEG H.263
CCITT Group 4 JPEG-LS H.264
JBIG (or JBIG1) JPLG-2000 MPEG-1
JBIG?2 MPEG-2
e MPEG-4
e . MPEG-4 AVC
PDE
PNG AVS
TIFF HDV
M-TPE(
QuickTime

VC-1 (or WMVO)

AN WD o &



Compression Model

f(x.y)—»

Source
encoder

—=

Channel
encoder

Encoder

Channel

—=

Channel| ] Source
decoder decoder

> f(x, ¥)

Decoder

The source encoder 1s responsible for removing redundancy
(coding, inter-pixel, psycho-visual)

The channel encoder ensures robustness against channel noise.
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Compression Model

|
——  Mapper | Quantizer — Symbl?l

Compressed data

__________________________________ for storage

Encoder and transmission

'y

7/
el | flx.y)
| l",l}’

| Symbol Inverse

:h' dgcc:d::r | mapper i_. .
|L - fley f)

Decoder
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Compression Types

Compression
e
Error-Free Compression +
Lossy Compression
(Loss-less)

34



Error-Free Compression

Some applications require no error in compression
(medical, busmess documents, etc..)

Cr=2 to 10 can be expected.

Make use of coding redundancy and inter-pixel
redundancy.

Ex: Huffman codes, LZW, Arithmetic coding, 1D

and 2D run-length encoding, Loss-less Predictive
Coding, and Bit-Plane Coding.

35



Methodl: Huffman Coding

Huffman coding 1s an entropy
encoding algorithm used for 16) 20)
lossless data compression. The
term refers to the use of a variable-
length code table for encoding a
source symbol (such as a character = @ (2 @) (2 @ b3 12 @ &3
in a file) where the variable-length o i fpp o
code table has been derived m a

particular way based on the

4 @ 0 4 3 L

Cnginal source aource reduchion

Symbaol Probabhility ' 2 3 i
estimated probability of occurrence 04 04 04 04 -0
. iy, 3 3 (L3 hiq 04
for each possible value of the o) 01 ~02-~03.
il 1 14 01-
source symbol. s 00601

ils 004 —
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Methodl: Huffman Coding

* The most popular technique for removing coding
redundancy is due to Huffman (1952)

* Huffman Coding vields the smallest number of code
symbols per source symbol

* The resulting code 1s opumal

Original source Source reduction

Syvmbol Probability 1 2 3 4

s 0.4 0.4 0.4 0.4 0.6

ag 0.3 0.3 0.3 U.3:|+ 0.4

ay 0.1 0.1 0.2 :I—-n,3

aay 0.1 0.1 j‘ 0.1

as 0.06 —— 3= 0.1

as 004 —




Methodl: Huffman Codes

Uriginul SOurce source reduction
Sym. Prob. Code 1 2 3 -I
il 04 | 04 1 04 1 04 1 6 1
i 0.3 00 03 00 (1.3 00 0.3 EH]::I_ 04 1
i 0.1 011 0.1 011 (.2 010 30
iy 0.1 0100 0.1 [H[ﬂ:lr[].l 011
i (.06 01010 0.1 0101
s 0,04 01011

L,, =10.4)+2(03)+3(0.) +4(0.1)+5(0.06)+ 5(0.04)

= 2.2 bits
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Method1:

Huffman coding
Assignment procedure

Huffman Codes

Original source

Source reduction

Symbol  Probability  Code 1 2 3 -
@ 04 1 04 1 04 1 04 1 0.6 0
a4 0.3 00 0.3 00 0.3 00 (.3 ﬂﬂ{ﬂﬁl ]
i 0.1 011 0.1 011 0.2 010=/—03 01
iy 0.1 (0100 (.1 ﬂ'lﬂﬂjﬂ.‘l 011 <
i 0.06 01010 0.1 0101
s 0.04 01011
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END of Chapter 8. Part1
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LpYessior

Key Features of Chapter 8

* Compression Methods

1. Huffman Coding.

2. Arithmetic Coding.

3. LZW Coding.

4. Bit-plane Coding.

5. Run Length Coding.

6. Symbol-based Coding.
« Tutorials



2. Arithmetic Coding

Arithmetic codingisa formof 57", T . .
variable-length entropy encoding. "7, . . AT
Astring is converted to arithmetic [/
encoding, usually characters are m / " |
stored with fewer bits | | |
Arithmetic coding encodes the o " Nl sl

enfire message nto a single

Source Symbol ~ Probability  Initial Subinterval

number, a fraction » where (0.0

dy 02 0.0.02)
<p< 1.0). 0 02 02,04)
i 04 04,08)
f, 02 05, 1.0)
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2. Arithmetic Coding

Arithmetic codingisa formof 57", T . .
variable-length entropy encoding. "7, . . AT
Astring is converted to arithmetic [/
encoding, usually characters are m / " |
stored with fewer bits | | |
Arithmetic coding encodes the o " Nl sl

enfire message nto a single

Source Symbol ~ Probability  Initial Subinterval

number, a fraction » where (0.0

dy 02 0.0.02)
<p< 1.0). 0 02 02,04)
i 04 04,08)
f, 02 05, 1.0)
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3. LZW Coding

* Lempel-Z1v-Welch (LZW) coding assigns fixed-length code words to
variable length sequences of source symbols but requires no a priori
knowledge of the probability of occurrence of the symbols to be
encoded.

» LZW compression has been mtegrated mto a variefy of mainstream
1maging file formats. including the graphic interchange format (GIF).
tagged image file format (TIFF), and the porfable document format
(PDF)

* At the onset of the coding process. a codebook or “dictionary™
contamning the source symbols to be coded 1s cocnstructed.

* For 8-bit monochrome mmages. the first 256 words of the dictionary
are assigned to the gray value 0.1.2,....253.




3. LZW Coding

* As the encoder sequentially examines the image’s pixels, gray-level
sequences that are not 1n the dictionary are placed 1n algorithmically
determimed (e.g.. the next unused) locations.

» [ the first two pixels of the 1mage are white. for mstance, sequence
*255-255" muight be assigned to location 256, the address following
the locations reserved for gray levels 0 through 255.

» The next fime that two consecutive white pixels are encountered.
code word 256, the address of the location confaining sequence
255-255. 15 used to represent them.

* If a 9-bit, 512-word dictionary 15 employed in the coding process, the
original (8+8) bits that were used to represent the two pixels are
replaced by a single 9-bit code word.




3. LZW Coding

* The size of the dictionary 1s an important system parameter.

» [f 1t 15 too small, the detection of matching gray-level sequences will
be less likely.

« If 1t 15 too large. the size of the code words will adversely affect
compression performance.

* If a 9-bit, 512-word dictionary 1s employed in the coding process, the
original (8+8) bits that were used to represent the two pixels are
replaced by a single 9-bit code word.

Ex. A 9-bit, 512-word dictionary 1s employed 1n the coding process.
Consider 4x4. 8-bit image of a vertical edge.
39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126



3. LZW Coding

The starting confent of 512-word dictionary 1s:

Dictionary Location Entry
0 0
1 1
233 155
236
a1l

Locations 256 through 511 are mnifially unused.



Currently [rictionary
Recognised Fixel Being Encird el Location
Sequence Prowessed (hiripui {(Code Word) DVictbonary Eniry
F._Q 0 30 241, g )
3 12 0 57 W26
126 |26 |26 258 126-126
| 24 i 126 250 | 2i5-35
ED 34
L39-10 126 ] 256 2l 30.30.126
|26 125
126-124 30 158 261 126-126-3
an E1H
30 126
3036126 |26 26l 262 39301 261 26
126 0
12634 k1 250 2t 126-35-349
an 126
30-124 126 257 2id 30-126-124
|26 126

3. LZW Coding

'I'.P_a!-’l.!!.? -
LZW coding l@ [ﬂ 126/ [126

example -
30| (39 (126 126
39 39 126 126
39 39 126 126

* The image 1s encoded by
processing 1its pixels i a
left-to-r1ght. top-to-bottom
manner.

* Nine additional code words
are defined.

* At the conclusion of coding. the dictionary contains 265 code words
and the LZW algorithm has successfully identified several repeating
gray-level sequences — leveraging them to reduce the original 128-

b1t image to 90 bits (1.e.. 10 9-bif codes).

M e 0 s



3. LZW Coding

» The resulting compression ration 1s 1.42:1

* Most practical applications require a strategy for handling
“dictionary overtflow”.
- simple solution 15 to flush or reinitialize the dictionary
when 1t becomes full and contmue coding with a new initialized
dictionary.
- a more complex option 1 fo monitor compression performance
and flush the dictionary when it becomes poor or unacceptable.

- alternately. the Jeast used dictionary entries can be tracked and
replaced when necessary.

10



4. Bit-Plane Coding

Another effective technique for reducing an 1mage’s inferpivel
redundancies 1s to process the image’s bit planes individually.

Bit-plane decomposition

The gray levels of an m-bit gray-scale image can be represented in the
form of the base 2 polynomial

- m-1 0

a 2" +a 2"+ 4a,2' +a,2

m 1-bit bit planes.

The mnherent disadvantage of this approach 1s that small changes 1n gray
level can have a significant impact on the complexity of the bit planes.

Ex. 127 (01111111) and 128 (10000000)
- every bit plane contain a corresponding 0 to 1 (or 1 to 0) transition

11



4. Bit-Plane Coding

An alternative decomposttion approach (which reduces the effect of
small gray-level variations) 1s fo first represent the image by an m-Dif
Gray code.

The m-bit Gray code g_ ,...8,2,,

— B 11—
g.=aDa, 0<i<m-12
Em1 = U1

Gray codes that correspond to 127 and 128 are 01000000 and
11000000, respectively.

12



4. Bit-Plane Coding

vy -}.'v.l'fwu' o Ml A e Tl
byl sy oband) ot G FIGURE 8.14 A
0y rf)( ,lu (9 e 1’/; et f A b»i r 1024 % 1024
?‘r"” Gngf Ll 4" f“‘“’*“r (a) B-hit
L ‘Lua rdu@‘h. ‘-'* f‘i/(ﬂtm{ mmmrhrnmc
/A,‘Z/‘/.“ Aﬂaq’\ /J’-/( iy p(t’{i nll::_.:«':'.uld.
(,w» tﬁ ."hq w»mu,w ?, 0 L{ lt‘] bmar)lmu;:c
o 2y Paor o Lunrt thossang
!..u (waq ;'4{/ MR LI

wUL A l/ t{ (W.»u' JA(LLto'

u ULLH (iUO‘[‘f-P Kﬂ WW"D?
,a/.id-ﬁ Al Vi 44."«..: W/#'
Z;{ LU Amlut’/ 0 aw/ :%

/]

Snd Aurun/| o0
ot ..n"\./lal/.A/ 0! '1”!‘ /u'

These two 1mages are used to illustrate the compression techniques.
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4. Bit-Plane Coding

FIGURE 8.15 The
four most
significant binary
(left column) and
Girav-coded (nght
column) bit
plancs of the
Image m

Fig, 8.14(a)

FIGURE 8.16 1he
tour least
significant binary
(left column ) and
Gray<oded (right
column) bit
planes of the
image in

Fie. 8. 14(0)

, kiat Wangsinpitak

14




5. Run Length Coding

s |-D run-length coding

s RLC+VLC according to run-lengths statistics

s 2-D run-length coding

s used for FAX 1mage compression
s Relative address coding (RAC)

« based on the principle of tracking the binary transitions that

begin and end

each black and white run

« combined wit

1 VLC

15



5. Run Length Coding

One-dimensional run-length coding

represent each row of an 1mage or bit plane by a sequence of lengths
that describe successive runs of black and white pixels.

- run-length coding

The basic concept 1s to code each configuous group of 0°s or 1°s
encountered i a left to right scan of a row by 1ts length and to
establish a convention for determining the value of the run.

(1) to specify the value of the first run of each row., or

(2) to assume that each row begins with a white run.
whose run length may m fact be zero

16



5. Run Length Coding

* The black and white run lengths may be coded separately using
variable-length codes that are specifically tailored to their own
statistics.

H, : an estimate of the entropy of the black run-length source
H,; : an estimate of the entropy of the white run-length source
L, : the average value of the black run lengths
L, : the average value of the white run-lengths

The approximate run-length entropy of the 1mage 1s
_H,+H,

T L+L

Eq. (8.4-4) provides an estumate of the average number of bits per

pixel required to code the run lengths 1n a binary image using a

variable-length code.

H (8.4-4)

17



6. Symbol-based Coding

Symbol compression 111
This approaches determine a set of me
symbols that constitute the image, i:ﬂl:li:lj
and take advantage of their multiple =
appearance. It convert each symbol s s
into token, generate a token table

and represent the compressed image o
as a st of tokens. e tN =47
This approach 1s good for document ..o S ’
1IAges. S e o

18



6. Symbol-based Coding

Triplet

abc

FIGURE .17

(a) A bi-level
document,

(b} symbol
dictionary, and
() the (riplels
used to locate the
symbols in the
document,

3

Token | Symbol
g
B
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/. Lossy Compression

» Lossy encoding 15 based on the concept of compromising
the accuracy of the reconstructed image 1n exchange for

increased compression.

If
p

he resulting distortion (whic

1 may or may not be visually

arent) can be tolerated, the 1

significant.

10:1 to 50:1 = more than 100:1

1CI6ase 1N compression can be

20



g

Comprossed
e

Inpul [:1: '| b B

8. Lossy Predictive Coding

Canhzer

Fredictor 4—| 3 +

symbot |
decoder I-:

Symbal e LOIMpressed
enceder infige

e Dhecom pressad

Predicior

] ™ image

il

I
FIGURE 8.21 A

lossy predictive
eoding maodel;

[ ) encoder and
(k] decoder,
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9. Lossy Transform Coding

» The predictive coding techniques operate directly on the pixels of
an 1mage and thus are spatial domain methods.

* In this section, we consider compression fec]
modifving the fransform of an image.

miques that are based on

* In fransform coding. a reversible, linear transform (such as Fourter
transform) 15 used to map the image mnto a set of fransform
coefficients, which are then quantized and coded.

» For most natural images, a significant number of the coefficients
have small magnitudes and can be coarsely quantized (or discarded

entirely) with little image distortion.

22



9. Lossy Transform Coding

* The goal of the transformation process is to decorrelate the plx&ls of

each subimage. or fo pack as | S /..-—..HT —
1t ) :,Iln:;r.: Fuerar - Symbal Compres
much mformation as possible &5 T whine nw"mu /,\“* i rI -;nlIPmr L

o =

into the smallest number of — —
2 " LTI R L ] Vi H"N"' SO RSE
transform coefficients. e ﬂ{.r'ﬂhr.‘?:mH e }-"“ i

* The quantization stage then »
. . FIGURE 828 A transform coding syatenm: (a) encoder, (B decoder
selectively eliminates or more
coarsely quantizes the coetficients that carry the least information.

* The encoding process terminates by coding (normally using
a variable length code) the quantized coefficients.

* Any or all of the transform encoding steps can be adapted to local
image content, called adapftive 1 c’mgfm m coding. or fixed for all
_subimages. called nonadaptive transform coding. Somkiat Wanasirioi

23



9. Lossy Transform Coding

Transform selection

Walsh-Hadamard transform (WHT)

Diserete cosine transform (DCT)

One of the most frequently used transformation for image
COMpIession.

Wavelet Selection

* The most widely used expansion functions for wavelet-based

compression are the Daubechies wavelets and biorthogonal
wavelets.

24



9. Lossy Transform Coding

Three approximations of the 512 x 512
monochrome 1mage in Fi1g.8.23.

These pictures were obtained by

1. Dividing the original image into
subimages of size 8 x 8.
2. Transforms 1S error

- DFT 1.28
- WHT 0.86
-DCT 0.68

3. truncating 50% of the resulting
coefficients (minimum magnitude).
‘s 4. inverse transform

FIGURE 8,31 Approsinations of Fig. 8 23 ssing the (&) Fowier, () Hafamard, ad (¢) o
sNe transforms, toasther with the commesponding sealed error s

25



9. Lossy Transform Coding

Compression ratio
34:1 67 :1

(the average compression ratio
obtained by using all the error-
free methods was only 2.62 : 1)

FINS error
3.42 6.33 gray levels

ab

cd

e f

FIGURE 8,38 Lot columm Apprasimations of Fg 8 22 usiag the DCT and noema®zation
arrary of Faz. 83N b). Right column: Similar resuds for 4Z.

26



END of Chapter 8. Part2
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Key Features of Chapter 9

Detection of gray level discontinuities
— Point detection
— Line detection
— Edge detection
 Gradient operators
* LoG : Laplacian of Gaussian

Edge linking and boundary detection
— Hough transform

Thresholding

Region-based segmentation

Segmentation by Morphological watersheds
The use of motion 1n segmentation



2. Preview

« Segmentation is to subdivide an image
Into its component regions or objects.

« Segmentation should stop when the
objects of interest in an application have
been isolated.




3. Principal approaches

Goal of Image Analysis : Extracting information from
an image

« Step 1:segment the image ---> objects or regions

« Step 2: describe and represent the segmented
regions in a form suitable for computer processing

« Step 3:image recognition and interpretation

« Segmentation algorithms generally are based on
one of 2 basis properties of intensity values

— discontinuity : to partition an image based on
sharp changes in intensity (such as edges)

— similarity : to partition an image into regions that
are similar according to a set
of predefined criteria.



4. Principle Approaches

segmentation _
| , Objects &
e regions
Description &
Representation
o ¥
Understanding, fECUQHItIO N
Decisions, p Features

Knowledge



5. What Is segmentation?

Subdivides an 1mage mto 1ts constituent regions or objects

Separate an 1mage 1nto regions which are called as objects and
background

Represent the result images with binary images, label the
objects as "1 and the background as “0” commonly.

Heavily rely on one of two properties of intensity values:
— Discontinuity ---- Partition based on abrupt changes in
mtensity, €.g. edges in an 1mage
* point / line / edge / corner detection

— Simularity ---- Partition based on intensity similarity, e.g.
thresholding

* thresholding
* region growing / splitting / merging



6. Segmentation

segmentation
I I
Detect Detect
discontinuity similarity
‘ Edge detection
Gradient Zero crossing Optimal Boundary
operator (LoG) thresholding thresholding
| | | \
‘ edge |
Hough

Edge linking  Transform Region growing



/. What should Good Segmentation
Algorithm be?

* Region interiors

— Sumple

— Without many small holes
* Adjacent regions

— Should have significantly different values
* Boundaries

— Sumple

— Not ragged

— Spatially accurate



8. Detection of Discontinuity

s detect the three basic types of gray-
level discontinuities

= points , lines , edges
= the common way is 1o run a mask through
the image

'"'l 'H.'z .'H-}

1w, W Wy

o iy wy




8. Detection of Discontinuity

Correlation

Grayscale image |

a b /
g6 )) =Y > n(s,0)f (x+s,y+1)

s—=af=->b \

Mask coefficient

10



9. Convolution Vs. Correlation

11



9. Convolution Vs. Correlation

Correlation

/— Origin I i
faj 00010000 1 232K

}
(b} O |

1 2328
L Starting position ahgnment
LS

[————-- Lero padiding —'ﬂ_'

{Cl[lllﬂ[!l[lﬂﬁ]{]flﬂﬂllﬂn{l
12328

(dy 0 @ 00 0D 01 0000000
1 23 28K
L Posation after one shift

g) DDOOOQOODOYTOO00DOQOO0O0OOD
12328
L Posaion after four shaits

) ooooo0oTo00o00n00
12328

Fmal position 4

Full correlation resuit
e) 0O0DO0R23I210000

Cropped corrclation result

Convolation
, Crigin ! e retated 18F
oo oonin 2321 (i}
Do o1 0000 i)
R232)]

OO0 0000001 00000000 (k)
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ka2 D

O00O01T00000000 )
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00T oo 000WwimDim(m)
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=

ooano

Gooo0ougo0l 00000000 (a)
82321

Full convolution resalt
000123280000 {0)

Cropped convolution result
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9. Convolution Vs. Correlation
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9. Convolution Vs. Correlation

i h
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T

[
=
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11. First and Second Derivatives
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12. Isolated Point Detection

-1 -1 -1

. a point has been detected at the location
on which the mark is centered if

IR| > T
= where

= T is a nonnegative threshold

= R is the sum of products of the coefficients
with the gray levels contained in the region
encompassed by the mark.



12. Isolated Point Detection

» Note that the mark is the same as the
mask of Laplacian Operation (in chapter 3)

x The only differences that are considered
of interest are those large enough (as
determined by T) to be considered
isolated points.

R[>T

17



12. Isolated Point Detection

Example

d
-1 -1 -1 bcd
FIGURE 10.2
=1 8 -1 (a) Point

detection mask.
(b) X-ray image
-t | =1 ]| -~ of a turbine blade
with a porosity.
‘ (¢) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)
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13. Line Detection
i Line Detection

=1 -1 -1 =1 -1 2 =1 2 =1 2 | -1

2 2 2 -1 2 -1 -1 2 -1 -1 2 -1

=1 -1 -1 2 -1 -1 -1 2 =1 -1 -1 2

Horzonlal +45 Vertical —45°

s Horizontal mask will result with max response when a
line passed through the middle row of the mask with a
constant background.

s the similar idea is used with other masks.

= note: the preferred direction of each mask is weighted
with a larger coefficient (i.e.,2) than other possible

directions.
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13. Line Detection
i Line Detection

= Apply every masks on the image
s let R1, R2, R3, R4 denotes the response of

the horizontal, +45 degree, vertical and -
45 degree masks, respectively.

= if, at a certain point in the image
RI> IR
= for all j=i, that point is said to be more

likely associated with a line in the
direction of mask i.

20



13. Line Detection
i Line Detection

s Alternatively, if we are interested in
detecting al?’lines in an image in the
direction defined by a given mask, we
simply run the mask through the image and
threshold the absolute value of the resulft.

» The points that are left are the strongest
responses, which, for lines one pixel thick,
correspond closest to the direction

defined by the mask.

21



13. Line Detection

Example
|

i
b ¢

FIGURE 10.4
[ustration of line
detection.

(a) Binary wire-
bond mask.

(by Absolute
value of result
after processing
with =457 line
detector.

(<) Result of
thresholding
image (b),

22



14. Edge Detection

« we discussed approaches for implementing
s first-order derivative (bradient operator)
» second-order derivative (Laplacian operator)

s Here, we will talk only about their properties for
edge detection.

s We have introduced both derivatives in chapter 3

23



14. Edge Detection

‘L Ideal and Ramp Edges

Model of an ideal digital edge

Giray-level profile
of a horizontal line
through the image

Model of a ramp digital edge ab

FIGURE 10.5

(a) Model of an
ideal digital edge.
(h) Model of a
ramp edge. The
slope of the ramp
1S proportional to
the degree of
blurring in the
edge.

because of optics,
otanormonaie  S@MPling, image
through the image acqu ISItIOﬂ
imperfection
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14. Edge Detection
i Thick edge

= The slope of the ramp is inversely proportional to the
degree of blurring in the edge.

= We no longer have a thin (one pixel thick) path.

» Instead, an edge point now is any point contained in the
ramp, and an edge would then be a set of such points
that are connected.

= The thickness is determined by the length of the ramp.

= The length is determined by the slope, which is in turn
determined by the degree of blurring.

= Blurred edges tend to be thick and sharp edges
tend to be thin

25



14. Edge Detection

i First and Second derivatives

Greav-level pml’:lc/i

FIGURE 10.6

{a) Two regions
separated by a
vertical edge.

(b} Dxetanl near
the cdge, showing
a grayv-level
profile, and the
first and sccond
denvatives of the

profile.
First
denvalv
the signs of the derivatives T \\\
would be reversed for an edge /" N\

that transitions from light to | |
dark \ /
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14. Edge Detection

i Second derivatives

= produces 2 values for every edge in an
image (an undesirable feature)

= an imaginary straight line joining the
extreme positive and negative values of
the second derivative would cross zero
near the midpoint of the edge. (zero-
crossing property)

27



14. Edge Detection

i Zero-crossing

s quite useful for locating the centers of
thick edges

s we will talk about it again later

28



14. Edge Detection

Noise Images

s First column: images and N
gray-level pr’ofilagé of a ___
ramp edge corrupted by
random &aussian noise of
mean O and ¢ = 0.0, 0.1,

1.0 and 10.0, B

respectively.

= Second column: first-
derivative images and
gray-level profiles.

= Third column : second- . -
derivative images and
gray-level proftiles. J




14. Edge Detection
i Keep in mind

= fairly little noise can have such a
significant impact on the two key
derivatives used for edge detection in
Images

= image smoothing should be serious

consideration prior fo the use of

derivatives in applications where noise is
likely to be present.,
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14. Edge Detection
i Edge point

» to determine a point as an edge point

= the transition in grey level associated with
the point has to be significantly stronger
than the background at that point.

= use threshold to determine whether a value
is “significant” or not.

= the point’s two-dimensional first-order
derivative must be greater than a specified

threshold.
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14. Edge Detection

X

i Gradient Operator Vf{gj %

= first derivatives are implemented using
the magnitude of the gradient.

Vf = mag(Vt) =[G + G*1”

commonly approx.

-] 2

Ox oy
Vf ~|G,|+|G,]
the magnitude becomes nonlinear

32



14. Edge Detection

ﬂ Gradient Masks

o <2 o
4 s T
& <5 Ty
-1 0 0 -1
0 ! 1 0
Raberts

-1 -1 -1 |
0 0 0 =1
| | | -1

Prewitt

=1 =2 -1 -1
0 0 0 -2
| 2 1 =]

Sobel
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14. Edge Detection

Diagonal edges with Prewitt
and Sobel masks

0 1 1 | —1 0
-1 0 1 | 0 1
- -1 0 )] 1 1

Prewitt

0 | 2 — -1 0
—1 0 1 -1 0 1
-2 -1 0 0 1 2

Sobel
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14. Edge Detection

FIGURE 10.10

(a) Original
image. (b) |G,].
component of the
gradient in the
x-direction.

(€) |G,l.
component in the
y-direction.

(d) Gradient
image. |G| + |G,].




14. Edge Detection

ab

c d

FIGURE 10.11
Same sequence as
in Fig. 10.10, but
with the original
image smoothed
withal$ X 5§
averaging hiter.
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14. Edge Detection

i Example

ab

FIGURE 10.12
Diagonal edge
detection,

(a) Result of using
the mask in

Fig. 10.9(c).

(b) Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11(a).
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END of Chapter 9. Part1
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