
1

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title Software Engineering Module Delivery

Module Type Core ☒ Theory
 ☒ Lecture

 ☒ Lab
 ☐ Tutorial
 ☐ Practical
 ☐ Seminar

Module Code CPE 206

ECTS Credits 6

SWL (hr/sem) 150

Module Level 2 Semester of Delivery 3

Administering Department Computer Eng. College College of Engineering

Module Leader Dr. Khalid Jamal Jadaa e-mail Khalid.jamal.jadaa@uodiyala.edu.iq

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Ghassan Khazal Ali e-mail Ghassan_khazal@uodiyala.edu.iq

Scientific Committee Approval
Date

02/06/2024 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module Semester

Co-requisites module Semester

2

Module Aims, Learning Outcomes and Indicative Contents

 أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

 Module Objectives

المادة الدراسيةأهداف

Upon completion of this course, the student will be able to:

1. List and describe the fundamental phases of the Software Development

Lifecycle (SDLC)

2. Define and describe fundamental software engineering terminology and

coding practices

3. Explore/explain relationships between software engineering and other

engineering disciplines (Systems Engineering, Electrical and Computer

Engineering, Industrial Engineering)

4. Modify/build a software program that introduces students to software

development tools / environments

5. Troubleshoot and debug changes made to an existing software program

6. Develop an original Python software program, learning basic Python

language syntax 7. Build a foundation for academic success in the Software

Engineering degree program

Module Learning

Outcomes

مخرجات التعلم للمادة

 الدراسية

1. Describe basic software development and computing fundamentals that

make up the Software Development Lifecycle.

2. Explore relationships between software engineering and other engineering

disciplines (Systems Engineering, Electrical and Computer Engineering,

Industrial Engineering, and Computer Science)

3. Experiment with and use traditional software development process and

testing tools, such as configuration management, interpreters/compilers and

debuggers.

4. Analyze the functionality and performance of software application programs

5. Compare and contrast how diverse software applications produce solutions

to meet specific objectives/needs in a variety of fields including, but not

limited to public health, safety, global, cultural, social, environmental, and

economic applications

6. Demonstrate and communicate software engineering principles effectively

through written reports and/or verbal presentations.

7. Summarize both ethical and professional responsibilities of a software

engineer.

8. Build a foundation for academic success in the Software Engineering degree

program.

Indicative Contents

 المحتويات الإرشادية

1. Introduction to Software Engineering:

 What is Software Engineering? Definition, goals, principles, and

importance in today's world.

 The Software Development Lifecycle (SDLC): Various models (Waterfall,

Agile, Spiral, etc.), their advantages and disadvantages.

 Software Engineering Ethics and Professionalism: Code of ethics, social

impact of software, and responsible software development.

2. Requirements Engineering:

3

 Elicitation and Analysis: Gathering, analyzing, and documenting user

needs, functional and non-functional requirements.

 Requirements Specification and Validation: Writing clear and

unambiguous requirements documents, techniques for validation and

verification.

 Requirements Management: Tracking, controlling, and managing

changes to requirements throughout the development process.

3. Software Design:

 Design Principles: Principles like modularity, abstraction, cohesion,

coupling, etc.

 Architectural Design: High-level design, choosing the right architecture

for the project (layered, client-server, etc.).

 Detailed Design: Designing individual components, data structures,

algorithms, and interfaces.

 Design Patterns: Common reusable solutions for recurring design

problems.

4. Software Construction:

 Coding Standards and Best Practices: Adhering to coding conventions,

writing clean and maintainable code.

 Testing: Unit testing, integration testing, system testing, user

acceptance testing, and different types of testing methods.

 Debugging and Troubleshooting: Finding and fixing bugs, techniques for

debugging and tracing errors.

5. Software Deployment and Maintenance:

 Deployment Strategies: Release planning, deployment methods, and

managing different environments.

 Software Maintenance: Corrective, adaptive, perfective maintenance,

and managing software evolution.

 Software Configuration Management: Version control systems,

managing source code and other project artifacts.

 Software Quality Assurance: Quality metrics, software quality assurance

methods, and ensuring the delivered software meets requirements.

6. Software Project Management:

 Project Planning and Estimation: Defining project scope, creating

timelines, and estimating effort and resources.

 Risk Management: Identifying, assessing, and mitigating risks

throughout the project lifecycle.

 Team Management: Communication, collaboration, and leadership skills

for managing software development teams.

 Software Metrics and Measurement: Tracking progress, measuring

performance, and improving development processes.

7. Advanced Software Engineering Topics (Optional):

 Software Architecture and Design Patterns: In-depth study of

architectural patterns and design patterns.

 Software Security: Secure coding practices, vulnerabilities, and security

testing.

4

 Software Reliability and Fault Tolerance: Ensuring software robustness

and resilience to errors.

 Software Engineering for Cloud and Mobile Applications: Developing

software for modern platforms.

 Agile Software Development: Deep dive into Agile methodologies like

Scrum and Kanban.

 DevOps and Continuous Integration/Continuous Delivery

(CI/CD): Automating software development and deployment processes.

8. Case Studies and Practical Projects:

 Applying the principles of software engineering through real-world case

studies and hands-on projects.

 This helps students understand the practical application of the concepts

learned in theory.

9. Tools and Technologies:

 Introduction to popular software engineering tools and technologies

like:

o Version Control Systems: Git, SVN

o Integrated Development Environments (IDEs): Eclipse, Visual

Studio, IntelliJ IDEA

o Project Management Tools: Jira, Trello

o Testing Tools: JUnit, Selenium

o Modeling Tools: UML modeling tools

Assessment:

Assessment can include:

 Assignments and projects

 Quizzes and exams

 Class participation

 Presentation and reports

Learning and Teaching Strategies

اتيجيات التعلم والتعليم استر

Strategies

1. Project-Based Learning (PBL) at the Core:

 The Principle: Students learn best by doing. PBL allows them to apply

theoretical concepts to real-world problems.

 Implementation:

o Small, Iterative Projects: Start with smaller projects that build on each

other.

o Teamwork: Encourage collaboration, communication, and conflict

resolution within teams.

o Real-World Relevance: Connect projects to actual industry challenges

or real-world issues.

5

o Feedback and Iteration: Regular feedback and opportunities to refine

designs and code based on feedback.

2. Agile Learning Methodology:

 The Principle: Agile principles focus on flexibility, collaboration, and

continuous improvement. This aligns well with modern software development

practices.

 Implementation:

o Short Iterations: Break down projects into short sprints (1-2 weeks) to

allow for flexibility and rapid feedback.

o Daily Stand-ups: Brief daily team meetings to discuss progress,

roadblocks, and upcoming tasks.

o Frequent Demonstrations: Regular show-and-tell sessions where

teams present their work and receive feedback.

o Retrospectives: Reflecting on each sprint to identify areas for

improvement in processes and collaboration.

3. Hands-on Coding and Tools:

 The Principle: Theoretical concepts become tangible when students write

code and use industry-standard tools.

 Implementation:

o IDEs and Version Control: Ensure students are proficient with an IDE

(e.g., Visual Studio, Eclipse) and a version control system (e.g., Git).

o Open Source Projects: Encourage contributing to or studying open-

source projects to gain experience.

o Coding Challenges and Exercises: Regularly assign coding exercises to

reinforce concepts and develop problem-solving skills.

4. Industry Guest Speakers and Mentors:

 The Principle: Real-world perspectives and insights from professionals can

inspire and guide students.

 Implementation:

o Guest Lectures: Invite software engineers or project managers to

share their experiences and challenges.

o Mentorship Programs: Connect students with industry professionals

for guidance and career advice.

o Case Studies: Present real-world case studies of software projects,

highlighting challenges, decisions, and outcomes.

5. Emphasis on Soft Skills:

 The Principle: Software engineering is not just about technical skills; effective

communication, teamwork, and problem-solving are crucial.

 Implementation:

o Communication Exercises: Emphasize clear and concise

communication in project reports, presentations, and team

interactions.

o Teamwork Dynamics: Encourage students to work in diverse teams

and learn to navigate different personalities and work styles.

o Problem-Solving Techniques: Develop analytical and critical thinking

skills to tackle complex software engineering problems.

6

6. Balancing Theory and Practice:

 The Principle: A strong theoretical foundation is essential, but it must be

grounded in practical application.

 Implementation:

o Interactive Lectures: Integrate coding demonstrations, interactive

exercises, and case studies into lectures.

o Project-Driven Learning: Frame theoretical topics within the context

of the ongoing project work.

o Assignments with Real-World Applications: Structure assignments

that directly relate to industry practices and software engineering

challenges.

7. Continuous Assessment and Feedback:

 The principle: Regular feedback and assessment help students identify areas

for improvement and track their progress.

 Implementation:

o Frequent Code Reviews: Peer and instructor code reviews to provide

constructive feedback on code quality and design.

o Project Milestones: Regular deadlines and milestones for project

deliverables, allowing for ongoing assessment.

o Self-Assessment: Encourage students to reflect on their learning and

progress through self-assessment exercises.

Student Workload (SWL)

 أسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
63

Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
4.2

Unstructured SWL (h/sem)

للطالب خلال الفصلالحمل الدراسي غتر المنتظم
87

Unstructured SWL (h/w)

 الحمل الدراسي غتر المنتظم للطالب أسبوعيا
5.8

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
150

Module Evaluation

 تقييم المادة الدراسية

As
Time/Number Weight (Marks)

Week

Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 20% (10) 6 and 12 LO #1 to #4 and #6 to #8

Assignments 2 10% (5)
4, 7 and

10

LO #2, #3, #4, #5 and

#7,#8,#9

7

Projects / Lab. 1 10% (10)

Report

Summative

assessment

Midterm Exam 1 hr 10% (10) 9 LO #1 - #7

Final Exam 3 hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Material Covered

Week 1 Introduction

Week 2-3 Software processes

Week 4 Agile software development

Week 5-6 Requirements engineering

Week 7 System modeling

Week 8 Architectural design

Week 9-10 Design and implementation

Week 11-12 Software testing

Week 12-13 Software evolution

Week 14-15 Project management

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

 المنهاج الاسبوعي للمختت
Week Material Covered

Week 1 Introduction to Software Engineering Lab - Setting Up Development

Environment, Version Control Systems

Week 2-3 Software Requirements Analysis - Use Case Diagrams, Data Flow Diagrams,

Entity Relationship Diagrams
Week 4-5 System Design - Class Diagrams, Sequence Diagrams, Activity Diagrams

Week 6-7 Implementation and Coding - Coding techniques, Unit Testing

Week 8-9 Integration and Testing - Integration Testing, Debugging Techniques

8

Week 10-11 Design Project1 E-binding

Week 12-13 Design Project 2 electronic cash counter

Learning and Teaching Resources

 مصادر التعلم والتدريس
 Text Available in the Library?

Required Texts

1. Software Engineering, 10th Edition Author: by Ian

Somerville, pearson , 2016

2. Tony Gaddis, “Starting out with Visual C#.”, Fourth

edition, Boston, Pearson Inc., 2017.

Yes

Recommended

Texts

 ROGER S. PRESSMAN BRUCE R. MAXIM

Software Engineering a practitioner’s approach,

NINTH EDITION, 2019.

 Ian Sommerville - Engineering Software Products_ An

Introduction to Modern Software Engineering-Pearson

(2020)

 Salvatore A. Buono, “C# and Game Programming: A

Beginner's Guide.” Second Edition, Boca Raton, CRC

Press Inc., 2019.

 Faraz Rasheed, “Programmer's Heaven: C# School.”,

First Edition, Fuengirola, Synchron Data, 2006.

No

Websites
 Any other materials available on the web

 Grading Scheme
 مخطط الدرجات

Group Grade التقدير Marks % Definition

Success Group
(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail)(49-45) راسب)قيد المعالجة More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

http://www.cplusplus.com/doc/tutorial/

