الملحق 4: وصف المادة الدراسية #### **MODULE DESCRIPTION FORM** ### نموذج وصف المادة الدراسية | Module Information | | | | | | | | |------------------------------------|--------------------------|----------------|-------------------------------|------------------------|--------------------------|---|--| | معلومات المادة الدراسية | | | | | | | | | Module Title | Electromagnetic Fields I | | I | Modu | le Delivery | | | | Module Type | Core | | | | ⊠ Theory | | | | Module Code | | COE 206 | | | ☐ Lecture
☐ Lab | | | | ECTS Credits | | 4 | | | □ Tutorial □ | | | | SWL (hr/sem) | /sem) 100 | | | | ☐ Practical
☐ Seminar | | | | Module Level | | UGII | Semester o | er of Delivery | | 1 | | | Administering Dep | partment | BSc - COMM | College | College of Engineering | | | | | Module Leader | | | e-mail | | | | | | Module Leader's Acad. Title | | | Module Leader's Qualification | | | | | | Module Tutor Name (if available) | | e-mail | E-mail | | | | | | Peer Reviewer Name | | Name | e-mail | E-mail | | | | | Scientific Committee Approval Date | | 2024/9/1 | Version Number 1.0 | | | | | | Relation with other Modules | | | | | | |-----------------------------------|------|----------|--|--|--| | العلاقة مع المواد الدراسية الأخرى | | | | | | | Prerequisite module | None | Semester | | | | | Co-requisites module | None | Semester | | | | | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |---|--|--|--|--|--| | | أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية | | | | | | Module Objectives
أهداف المادة الدراسية | Study of electromagnetic fields is basically concerned with study of charges at rest and in motion. Electromagnetic principles serve as fundamentals for detailed and in-depth study of communication engineering and are indispensable for analysis and understanding of various subjects in communication engineering like antennas, waves propagation, microwaves, radar and so on. | | | | | | Module Learning
Outcomes
مخرجات التعلم للمادة
الدراسية | Enabling student to know how to treat with mathematical equations of vector for different types of coordinates. Enabling student to know how to plot the components for different coordinates. Apply vector calculus to electric and potential fields due to various charge distributions. Compute static electric field and electric force. Compute potential, Electric flux density, Capacitance using Poisson's and Laplace's equations Compute Energy Expended in Moving a Point Charge | | | | | | | 1. Course introduction (4 hrs) | | | | | | Indicative Contents
المحتويات الإرشادية | 2. Theoretical lectures (24 hrs) | | | | | | Description | Review of vector calculus. Coulomb's law and electric field intensity: Coulomb's law, electric field intensity filed of n-point charges, field of a continuous and volume charge distributions, fields the charge and sheet charge, streamlines and sketches of fields. Electric flux density and Gauss's law: Electric flux density, Gauss's law, application of Gauss's law, divergence, Maxwell's first equation. Energy and potential: Energy expanded in moving appoint charge in an electric field; definition of potential difference and potential; potential field of appoint charge and system of charges; potential gradient; dipole. Conductors, dielectrics and capacitance: Current and current density; continuity of current; conductor properties and boundary conditions, nature of dielectric materials; boundary conditions for perfect dielectric materials; capacitance. | | | | | | Learning and Teaching Strategies | | | | | | |----------------------------------|--|--|--|--|--| | استراتيجيات التعلم والتعليم | | | | | | | | In this course, students are guided by: | | | | | | Strategies | Using different examples. | | | | | | Strategies | Using different styles of discussion that aim to connect the theoretical and practical | | | | | | | sides. | | | | | - Asking questions and giving exercises that require analysis and conclusions related to lectures. - Encourage students to participate in discussions and do the practical work. - Encourage students to work in groups. | Student Workload (SWL) | | | | | | |---|--------------|--|-----|--|--| | ۱۰ اسبوعا | ، محسوب لـ د | الحمل الدراسي للطالب | | | | | Structured SWL (h/sem) | 48 | Structured SWL (h/w) | 3 | | | | الحمل الدراسي المنتظم للطالب خلال الفصل | 40 | الحمل الدراسي المنتظم للطالب أسبوعيا | | | | | Unstructured SWL (h/sem) | F2 | Unstructured SWL (h/w) | | | | | الحمل الدراسي غير المنتظم للطالب خلال الفصل | 52 | الحمل الدراسي غير المنتظم للطالب أسبوعيا | 5.4 | | | | Total SWL (h/sem) | 100 | | | | | | الحمل الدراسي الكلي للطالب خلال الفصل | 100 | | | | | | Module Evaluation | | | | | | | |-----------------------|-----------------|-----------|------------------|----------|-------------------|--| | تقييم المادة الدراسية | | | | | | | | Time/Nur
er | | Time/Numb | Weight (Marks) | Week Due | Relevant Learning | | | | | er | | | Outcome | | | | Quizzes | 2 | 5% (10) | 6 and 12 | LO #1 to #6 | | | Formative | Assignments | 2 | 5% (10) | 2 and 13 | LO #3 to #6 | | | assessment | Projects / Lab. | | | | | | | | Report | 2 | 10% (20) | 13 | LO #3, #4 and #6 | | | Summative | Midterm Exam | 1hr | 10% (10) | 9 | LO #1 - #5 | | | assessment | Final Exam | 3hr | 50% (50) | 16 | All | | | Total assessment | | | 100% (100 Marks) | | | | | Delivery Plan (Weekly Syllabus) | | | | | | |---------------------------------|---|--|--|--|--| | | المنهاج الاسبوعي النظري | | | | | | | Material Covered | | | | | | Week 1 | Review of Vector Analysis: Scalars and vectors, Unit vector, Vector addition and subtraction, Position and distance vectors, Dot product, Cross product, Scalar triple product, Vector triple product, Components of a vector, | | | | | | Week 2 | Cartesian co-ordinate system, Circular cylindrical co-ordinate system, Spherical co-ordinate system, transformation from one co-ordinate to other co-ordinate systems | | | |---------|---|--|--| | Week 3 | Static Electric Fields: Coulomb's law, Electric field intensity, | | | | Week 4 | Field Arising from a Continuous Volume Charge Distribution | | | | Week 5 | Electric field due to point charges, Electric Field due to Line Charge, | | | | Week 6 | Electric Field due to Sheet of Charge | | | | Week 7 | Electric Flux Density, Streamlines and Sketches of Fields, | | | | Week 8 | Gauss' law and its applications, Divergence theorem, | | | | Week 9 | Energy Expended in Moving a Point Charge in an Electric Field, | | | | Week 10 | Definition of Potential Difference and Potential, | | | | Week 11 | The Potential Field of a Point Charge, The Potential Field of a System of Charges, | | | | Week 12 | Potential gradient, Electric dipole, Energy Density in the Electrostatic Field | | | | Week 13 | Conductors, Dielectrics: Current and current density, Ohm's law in point form, Continuity equation, | | | | Week 14 | Properties of Conductor, Semiconductors and Dielectric Materials, | | | | Week 15 | Conductor-dielectric boundary condition, Dielectric-dielectric boundary condition, Polarization in dielectrics, | | | | Delivery Plan (Weekly Lab. Syllabus) | | | | | | |--------------------------------------|--------------------------|--|--|--|--| | | المنهاج الاسبوعي للمختبر | | | | | | | Material Covered | | | | | | Week 1 | | | | | | | Week 2 | | | | | | | Week 3 | | | | | | | Week 4 | | | | | | | Week 5 | | | | | | | Week 6 | | | | | | | Week 7 | | | | | | | Week 8 | | | | | | | Week 9 | | | | | | | Week 10 | | | | | | | Week 11 | | | | | | | Week 12 | | | | | | | Week 13 | | | | | | | Week 14 | | | | | | | Week 15 | | | | | | | Learning and Teaching Resources | | | | | |---------------------------------|--|-----|--|--| | مصادر التعلم والتدريس | | | | | | Text Available in the Library? | | | | | | Required Texts | W. H. Hayt, J. A. Buck, "Engineering Electromagnetics",
McGraw Hill Education M.N.O. Sadiku, S.V. Kulkarni, "Principles of
Electromagnetics", Oxford University | Yes | | | | Recommended
Texts | Joseph A. Edminister, Mahmood Nahvi,
"Electromagnetics", Schaum's Outline Series Steven W. Ellingson, "Electromagnetics", Blacksburg,
Virginia | Yes | | | | Grading Scheme
مخطط الدرجات | | | | | | |--------------------------------|-------------------------|---------------------|----------|---------------------------------------|--| | Group | Grade | التقدير | Marks % | Definition | | | | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | | 6 | B - Very Good | جید جدا | 80 - 89 | Above average with some errors | | | Success Group
(50 - 100) | C - Good | جيد | 70 - 79 | Sound work with notable errors | | | (30 - 100) | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | | | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | | Fail Group
(0 – 49) | FX – Fail | راسب (قيد المعالجة) | (45-49) | More work required but credit awarded | | | | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.