



#### الملحق 4: وصف المادة الدراسية

#### MODULE DESCRIPTION FORM

#### نموذج وصف المادة الدراسية

| Module Information                 |                           |            |               |                          |                                                                               |   |
|------------------------------------|---------------------------|------------|---------------|--------------------------|-------------------------------------------------------------------------------|---|
| معلومات المادة الدراسية            |                           |            |               |                          |                                                                               |   |
| Module Title                       | Electromagnetic Fields II |            | I             | Modu                     | le Delivery                                                                   |   |
| Module Type                        |                           | Core       |               |                          | <ul><li>☑ Theory</li><li>☐ Lecture</li><li>☐ Lab</li><li>☑ Tutorial</li></ul> |   |
| Module Code                        |                           | COE 211    |               |                          |                                                                               |   |
| ECTS Credits                       |                           | 4          |               |                          |                                                                               |   |
| SWL (hr/sem)                       |                           | 100        |               |                          | <ul><li>☐ Practical</li><li>☐ Seminar</li></ul>                               |   |
| Module Level                       |                           | UGII       | Semester o    | nester of Delivery       |                                                                               | 2 |
| Administering Dep                  | partment                  | BSc - COMM | College       | College of Engineering   |                                                                               |   |
| Module Leader                      |                           |            | e-mail        | e-mail                   |                                                                               |   |
| Module Leader's Acad. Title        |                           |            | Module Lea    | e Leader's Qualification |                                                                               |   |
| Module Tutor                       | Name (if availa           | able)      | e-mail E-mail |                          |                                                                               |   |
| Peer Reviewer Name                 |                           | Name       | e-mail        | E-mail                   | E-mail                                                                        |   |
| Scientific Committee Approval Date |                           | 2024/9/1   | Version Nu    | mber                     | 1.0                                                                           |   |

| Relation with other Modules                                      |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|
| العلاقة مع المواد الدراسية الأخرى                                |  |  |  |  |  |
| Prerequisite module COE 206: Electromagnetic fields I Semester 1 |  |  |  |  |  |
| Co-requisites module None Semester                               |  |  |  |  |  |





| Module Aims, Learning Outcomes and Indicative Contents          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                 | أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Module Objectives<br>أهداف المادة الدراسية                      | Study of electromagnetic fields is basically concerned with study of charges at rest and in motion. Electromagnetic principles serve as fundamentals for detailed and in-depth study of communication engineering and are indispensable for analysis and understanding of various subjects in communication engineering like antennas, waves propagation, microwaves, radar and so on.                                                                                                                                                                                                                                                                                                         |  |  |  |
| Module Learning<br>Outcomes<br>مخرجات التعلم للمادة<br>الدراسية | <ol> <li>Derive forces and torques in magnetic fields, forces due to current carrying conductors and their inter-relationship with magnetic field</li> <li>Compute Capacitance, Capacitance of two wire line.</li> <li>Compute Magnetic boundary conditions</li> <li>Analyze Time varying fields.</li> <li>Analyze Maxwell's equations in different forms (point &amp; integral) and apply them to diverse engineering problems</li> <li>Compute Magnetic flux and magnetic flux density.</li> </ol>                                                                                                                                                                                           |  |  |  |
| Indicative Contents<br>المحتويات الإرشادية                      | 1. Course introduction (4 hrs) 2. Theoretical lectures (24 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Description                                                     | Poisson and Laplace's equations. Steady magnetic field: Boit-savart law, amperes law, curl; stokes theorem; magnetic flux, magnetic flux density, scalar and vector magnetic potentials. Magnetic forces and materials: Force on moving charge, force on differential current elements. Force between current differential elements, force and torque on a closed circuit, magnetization and permeability, magnetic boundary conditions, magnetic condition, magnetic circuit. Time-varying fields and Maxwell's equations: Faraday's law, displacement current; Maxwell's equations in point form; Maxwell's equations in integral form, wave equations, wave propagation in different media. |  |  |  |

| Learning and Teaching Strategies |                                                                                        |  |  |
|----------------------------------|----------------------------------------------------------------------------------------|--|--|
| استراتيجيات التعلم والتعليم      |                                                                                        |  |  |
|                                  | In this course, students are guided by:                                                |  |  |
| Strategies                       | Using different examples.                                                              |  |  |
|                                  | Using different styles of discussion that aim to connect the theoretical and practical |  |  |
|                                  | sides.                                                                                 |  |  |
|                                  | Asking questions and giving exercises that require analysis and conclusions related    |  |  |
|                                  | to lectures.                                                                           |  |  |
|                                  | Encourage students to participate in discussions and do the practical work.            |  |  |
|                                  | Encourage students to work in groups.                                                  |  |  |





| Student Workload (SWL)                      |             |                                          |     |  |
|---------------------------------------------|-------------|------------------------------------------|-----|--|
| الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا     |             |                                          |     |  |
| Structured SWL (h/sem)                      | 48          | Structured SWL (h/w)                     | 2   |  |
| الحمل الدراسي المنتظم للطالب خلال الفصل     | 40          | الحمل الدراسي المنتظم للطالب أسبوعيا     | 3   |  |
| Unstructured SWL (h/sem)                    | 52          | Unstructured SWL (h/w)                   |     |  |
| الحمل الدراسي غير المنتظم للطالب خلال الفصل | 32          | الحمل الدراسي غير المنتظم للطالب أسبوعيا | 3.4 |  |
| Total SWL (h/sem)                           | SWL (h/sem) |                                          |     |  |
| الحمل الدراسي الكلي للطالب خلال الفصل       | 100         |                                          |     |  |

|                                   | Module Evaluation                                   |     |                |          |                          |  |
|-----------------------------------|-----------------------------------------------------|-----|----------------|----------|--------------------------|--|
|                                   | تقييم المادة الدراسية                               |     |                |          |                          |  |
|                                   | Time/Numb Weight (Marks) Week Due Relevant Learning |     |                |          |                          |  |
|                                   |                                                     | er  | weight (wanks) | Week Due | Outcome                  |  |
|                                   | Quizzes                                             | 2   | 5% (10)        | 6 and 12 | LO #1 to #3 and #4 to #6 |  |
| Formative                         | Assignments                                         | 2   | 5% (10)        | 2 and 13 | LO #3 to #6              |  |
| assessment                        | Projects / Lab.                                     |     |                |          |                          |  |
|                                   | Report                                              | 2   | 10% (20)       | 13       | LO #3, #4 and #6         |  |
| Summative                         | Midterm Exam                                        | 1hr | 10% (10)       | 9        | LO #1 - #5               |  |
| assessment                        | Final Exam                                          | 3hr | 50% (50)       | 16       | All                      |  |
| Total assessment 100% (100 Marks) |                                                     |     |                |          |                          |  |

| Delivery Plan (Weekly Syllabus) |                                                                                                |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
|                                 | المنهاج الاسبوعي النظري                                                                        |  |  |  |
|                                 | Material Covered                                                                               |  |  |  |
| Week 1                          | Poisson's and Laplace's equations: Poisson's equation, Laplace's equation, Uniqueness theorem, |  |  |  |
| Week 2                          | Solution of Poisson's and Laplace's equation, Application of Poisson's and Laplace's equations |  |  |  |
| Week 3                          | Week 3 Capacitance, Capacitance of two wire line                                               |  |  |  |
| Week 4                          | Steady Magnetic Fields: Biot-Savart's law, Ampere's law,                                       |  |  |  |
| Week 5                          | Curl operation, Stoke's theorem                                                                |  |  |  |
| Week 6                          | Magnetic flux and magnetic flux density,                                                       |  |  |  |
| Week 7                          | Scalar and vector magnetic potentials,                                                         |  |  |  |





| Week 8  | Steady magnetic field produced by current carrying conductors                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Week 9  | Magnetic forces, materials and inductance: Force on a moving charge, Force on a differential current element,                           |
| Week 10 | Force between differential current elements,                                                                                            |
| Week 11 | Nature of magnetic materials, Magnetization and Permeability,                                                                           |
| Week 12 | Magnetic boundary conditions,                                                                                                           |
| Week 13 | Magnetic circuit, Inductance and mutual inductances                                                                                     |
| Week 14 | <b>Time varying fields and Maxwell's equations:</b> Faraday's law, Transformer and motional electromotive forces, Displacement current, |
| Week 15 | Maxwell's equations in point form, Maxwell's equations in integral form,                                                                |

|         | Delivery Plan (Weekly Lab. Syllabus) |  |  |  |
|---------|--------------------------------------|--|--|--|
|         | المنهاج الاسبوعي للمختبر             |  |  |  |
|         | Material Covered                     |  |  |  |
| Week 1  |                                      |  |  |  |
| Week 2  |                                      |  |  |  |
| Week 3  |                                      |  |  |  |
| Week 4  |                                      |  |  |  |
| Week 5  |                                      |  |  |  |
| Week 6  |                                      |  |  |  |
| Week 7  |                                      |  |  |  |
| Week 8  |                                      |  |  |  |
| Week 9  |                                      |  |  |  |
| Week 10 |                                      |  |  |  |
| Week 11 |                                      |  |  |  |
| Week 12 |                                      |  |  |  |
| Week 13 |                                      |  |  |  |
| Week 14 |                                      |  |  |  |
| Week 15 |                                      |  |  |  |

|                       | Learning and Teaching Resources                                                   |     |  |  |
|-----------------------|-----------------------------------------------------------------------------------|-----|--|--|
| مصادر التعلم والتدريس |                                                                                   |     |  |  |
|                       | Text Available in the Library?                                                    |     |  |  |
| Required Texts        | W. H. Hayt, J. A. Buck, "Engineering Electromagnetics",     McGraw Hill Education | Yes |  |  |





|                      | M.N.O. Sadiku, S.V. Kulkarni, "Principles of<br>Electromagnetics", Oxford University                                                                                                |     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Recommended<br>Texts | <ul> <li>Joseph A. Edminister, Mahmood Nahvi,<br/>"Electromagnetics", Schaum's Outline Series</li> <li>Steven W. Ellingson, "Electromagnetics", Blacksburg,<br/>Virginia</li> </ul> | Yes |

| Grading Scheme<br>مخطط الدرجات         |                         |                     |          |                                       |
|----------------------------------------|-------------------------|---------------------|----------|---------------------------------------|
| Group Grade التقدير Marks % Definition |                         |                     |          |                                       |
|                                        | A - Excellent           | امتياز              | 90 - 100 | Outstanding Performance               |
|                                        | <b>B</b> - Very Good    | جيد جدا             | 80 - 89  | Above average with some errors        |
| Success Group<br>(50 - 100)            | C - Good                | جيد                 | 70 - 79  | Sound work with notable errors        |
| (30 - 100)                             | <b>D</b> - Satisfactory | متوسط               | 60 - 69  | Fair but with major shortcomings      |
|                                        | E - Sufficient          | مقبول               | 50 - 59  | Work meets minimum criteria           |
| Fail Group                             | FX – Fail               | راسب (قيد المعالجة) | (45-49)  | More work required but credit awarded |
| (0 – 49)                               | <b>F</b> – Fail         | راسب                | (0-44)   | Considerable amount of work required  |
|                                        |                         |                     |          |                                       |

**Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.